Jeong Hun Choi, Nitee Kumari, Anubhab Acharya, Amit Kumar, Sanghwang Park, Dongyeon Ro, Jongcheol Seo, Eunhye Lee, Jee Hwan Bae, Dong Won Chun, Kyungtaek Oh, Sunmin Ryu, In Su Lee
{"title":"Solid-state self carbo-passivation for refurbishing colloidal dispersity of catalytic silica nanoreactors.","authors":"Jeong Hun Choi, Nitee Kumari, Anubhab Acharya, Amit Kumar, Sanghwang Park, Dongyeon Ro, Jongcheol Seo, Eunhye Lee, Jee Hwan Bae, Dong Won Chun, Kyungtaek Oh, Sunmin Ryu, In Su Lee","doi":"10.1039/d4mh01623h","DOIUrl":null,"url":null,"abstract":"<p><p>Silica-based nanostructures are among the most utilized materials. However, a persistent challenge is their irreversible agglomeration upon drying and heat treatments, restricting their homogeneous colloidal re-dispersion - a mandatory requirement for diverse bio-applications. We address this bottleneck by developing a self carbo-passivation (SCP) strategy: silica nanoparticles (NPs), pre-included with the catalytic metal precursors and organosilanes undergo <i>in vacuo</i> thermochemical conversion with highly controlled interior-to-surface segregation of nanometer-scale \"carbonaceous skin patches\". This self-generated inert passivate shielding phenomenon at the individual NP level completely inhibits interparticle cross-linking, stopping chemical agglomeration and enhancing colloidal stability. By SCP, we synthesized silica-based magnetic-catalytic nanoreactors for magnetic field-induced catalysis inside living cells, by benefitting from the convenient high colloidal stability in bio-media, easy endocytosis and protective accessibility to the catalytic site in the complex bio-environment. The present work demonstrates deep mechanistic insight into unexplored solid-state nanoscopic chemical passivation phenomena, dramatically influencing NP surface characteristics, playing a critical role in solution-based applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01623h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silica-based nanostructures are among the most utilized materials. However, a persistent challenge is their irreversible agglomeration upon drying and heat treatments, restricting their homogeneous colloidal re-dispersion - a mandatory requirement for diverse bio-applications. We address this bottleneck by developing a self carbo-passivation (SCP) strategy: silica nanoparticles (NPs), pre-included with the catalytic metal precursors and organosilanes undergo in vacuo thermochemical conversion with highly controlled interior-to-surface segregation of nanometer-scale "carbonaceous skin patches". This self-generated inert passivate shielding phenomenon at the individual NP level completely inhibits interparticle cross-linking, stopping chemical agglomeration and enhancing colloidal stability. By SCP, we synthesized silica-based magnetic-catalytic nanoreactors for magnetic field-induced catalysis inside living cells, by benefitting from the convenient high colloidal stability in bio-media, easy endocytosis and protective accessibility to the catalytic site in the complex bio-environment. The present work demonstrates deep mechanistic insight into unexplored solid-state nanoscopic chemical passivation phenomena, dramatically influencing NP surface characteristics, playing a critical role in solution-based applications.