Improving electron injection of organic light-emitting transistors via interface layer design†

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangyu Tan, Qingbin Li, Zhengsheng Qin, Dan Liu, Yumin Liu, Pu Wang, Ziyi Xie, Zhagen Miao, Yanan Lei, Yu Zhang, Pengsong Wang, Xianneng Chen, Zhenling Liu, Can Gao, Wenping Hu, Hao-Li Zhang and Huanli Dong
{"title":"Improving electron injection of organic light-emitting transistors via interface layer design†","authors":"Xiangyu Tan, Qingbin Li, Zhengsheng Qin, Dan Liu, Yumin Liu, Pu Wang, Ziyi Xie, Zhagen Miao, Yanan Lei, Yu Zhang, Pengsong Wang, Xianneng Chen, Zhenling Liu, Can Gao, Wenping Hu, Hao-Li Zhang and Huanli Dong","doi":"10.1039/D4MH00870G","DOIUrl":null,"url":null,"abstract":"<p >Ambipolar transport is crucial for constructing high performance organic light-emitting transistors (OLETs), but the ambipolar feature is usually not exhibited due to ineffective electron injection especially in symmetric device geometry. Herein, we show that electron injection could be greatly enhanced through the judicious design of an organic interface layer of 3,7-di(2-naphthyl)dibenzothiophene <em>S</em>,<em>S</em>-dioxide (DNaDBSO) which shows an interfacial dipole effect upon contact with a metal electrode, especially an Au electrode. When incorporating a DNaDBSO film beneath Au electrodes, the electron injection and mobility were significantly enhanced in 2,6-diphenylanthracene-based OLETs, and thus ambipolar transport (<em>μ</em><small><sup>max</sup></small><small><sub>h</sub></small>: 2.17 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, <em>μ</em><small><sup>max</sup></small><small><sub>e</sub></small>: 0.053 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>) was effortlessly obtained. Furthermore, the shift of the electroluminescent region was obviously observed upon modulation of gate voltage, which demonstrates efficient electron injection and intrinsic ambipolar transporting properties in devices. This study provides a new avenue for regulating the interface in electroluminescent devices towards high performance simple-structured OLETs in applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 5","pages":" 1589-1595"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh00870g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ambipolar transport is crucial for constructing high performance organic light-emitting transistors (OLETs), but the ambipolar feature is usually not exhibited due to ineffective electron injection especially in symmetric device geometry. Herein, we show that electron injection could be greatly enhanced through the judicious design of an organic interface layer of 3,7-di(2-naphthyl)dibenzothiophene S,S-dioxide (DNaDBSO) which shows an interfacial dipole effect upon contact with a metal electrode, especially an Au electrode. When incorporating a DNaDBSO film beneath Au electrodes, the electron injection and mobility were significantly enhanced in 2,6-diphenylanthracene-based OLETs, and thus ambipolar transport (μmaxh: 2.17 cm2 V−1 s−1, μmaxe: 0.053 cm2 V−1 s−1) was effortlessly obtained. Furthermore, the shift of the electroluminescent region was obviously observed upon modulation of gate voltage, which demonstrates efficient electron injection and intrinsic ambipolar transporting properties in devices. This study provides a new avenue for regulating the interface in electroluminescent devices towards high performance simple-structured OLETs in applications.

Abstract Image

通过界面层设计改善有机发光晶体管的电子注入。
双极性输运对于构建高性能有机发光晶体管(olet)至关重要,但由于电子注入效率低下,特别是在对称器件几何结构中,双极性输运通常无法表现出来。本文表明,通过合理设计3,7-二(2-萘基)二苯并噻吩S,S-二氧化二苯并噻吩(DNaDBSO)有机界面层,电子注入可以大大增强,该界面层在与金属电极(特别是金电极)接触时表现出界面偶极子效应。当在Au电极下加入DNaDBSO薄膜时,2,6-二苯基镧基oled的电子注入和迁移率显著增强,从而轻松获得双极性输运(μmaxh: 2.17 cm2 V-1 s-1, μmaxe: 0.053 cm2 V-1 s-1)。此外,在栅极电压调制下,电致发光区域明显移位,这表明器件具有有效的电子注入和固有的双极性输运特性。该研究为电致发光器件的接口调节提供了一条新的途径,从而实现高性能、简单结构的oled应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信