Enhanced Efficiency and Stability of Triple-Cation Perovskite Solar Cells through Engineering of the Cell Interface with Phenylethylammonium Thiocyanate.
IF 8.3 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haogang Meng, Xiaohui Li, Yongxiang Mai, Putao Zhang, Shengjun Li
{"title":"Enhanced Efficiency and Stability of Triple-Cation Perovskite Solar Cells through Engineering of the Cell Interface with Phenylethylammonium Thiocyanate.","authors":"Haogang Meng, Xiaohui Li, Yongxiang Mai, Putao Zhang, Shengjun Li","doi":"10.1021/acsami.4c16338","DOIUrl":null,"url":null,"abstract":"<p><p>It is reported that the tricationic mixed halide perovskite Cs<sub><i>x</i></sub>(FA<sub><i>y</i></sub>MA<sub>1-<i>y</i></sub>)<sub>1-<i>x</i></sub>Pb(I<sub><i>z</i></sub>Br<sub>1-<i>z</i></sub>)<sub>3</sub> (CsFAMA) possesses a stable crystal structure and outstanding bandgap tunability, rendering it one of the most competitive candidates for commercial perovskite solar cells (PSCs). Nevertheless, the numerous defects at the interface of the tricationic perovskite give rise to a significant constraint on the light capture performance of the device. Simultaneously, water molecules form intermediate compounds with the perovskite at the interface via hydrogen bonds, accelerating the degradation of the perovskite. This study reports the introduction of two-dimensional (2D) phenylethylthiocyanate (PEASCN) at the interface of three-dimensional (3D) perovskite. This approach significantly passivates the surface defects of the perovskite. Concurrently, due to the propensity of the organic ammonium cation PEA<sup>+</sup> to interact with the FA<sup>+</sup> base within the perovskite, SCN<sup>-</sup> is exposed outward to form a small-molecule hydrophobic layer. This method markedly reduces the loss of charge recombination and significantly enhances the device stability. The results indicate that the efficiency of the conventional device treated solely with PEASCN is as high as 23.94%. The unsealed device retains 85.12% of its initial efficiency after being placed in a conventional environment for 500 h. Furthermore, this surface passivation and hydrophobic strategy can be universally applicable to perovskite types with a high FA<sup>+</sup> content.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69430-69438"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16338","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is reported that the tricationic mixed halide perovskite Csx(FAyMA1-y)1-xPb(IzBr1-z)3 (CsFAMA) possesses a stable crystal structure and outstanding bandgap tunability, rendering it one of the most competitive candidates for commercial perovskite solar cells (PSCs). Nevertheless, the numerous defects at the interface of the tricationic perovskite give rise to a significant constraint on the light capture performance of the device. Simultaneously, water molecules form intermediate compounds with the perovskite at the interface via hydrogen bonds, accelerating the degradation of the perovskite. This study reports the introduction of two-dimensional (2D) phenylethylthiocyanate (PEASCN) at the interface of three-dimensional (3D) perovskite. This approach significantly passivates the surface defects of the perovskite. Concurrently, due to the propensity of the organic ammonium cation PEA+ to interact with the FA+ base within the perovskite, SCN- is exposed outward to form a small-molecule hydrophobic layer. This method markedly reduces the loss of charge recombination and significantly enhances the device stability. The results indicate that the efficiency of the conventional device treated solely with PEASCN is as high as 23.94%. The unsealed device retains 85.12% of its initial efficiency after being placed in a conventional environment for 500 h. Furthermore, this surface passivation and hydrophobic strategy can be universally applicable to perovskite types with a high FA+ content.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.