A Family of Two-Dimensional Quaternary Compounds A2BXY2 (A = K, Na; B = Li, Na; X = Al, Ga, In; Y = P, As, Sb) for Optoelectronics Applications.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-09 DOI:10.1021/acsami.4c16683
Run-Jie Peng, Ying Zhu, Jun-Hui Yuan, Kan-Hao Xue, Jiafu Wang
{"title":"A Family of Two-Dimensional Quaternary Compounds A<sub>2</sub>BXY<sub>2</sub> (A = K, Na; B = Li, Na; X = Al, Ga, In; Y = P, As, Sb) for Optoelectronics Applications.","authors":"Run-Jie Peng, Ying Zhu, Jun-Hui Yuan, Kan-Hao Xue, Jiafu Wang","doi":"10.1021/acsami.4c16683","DOIUrl":null,"url":null,"abstract":"<p><p>Expanding material types and developing two-dimensional (2D) semiconductor materials with high performance have been hotspots in the field. In this research, it is found that the 12 existing semiconductors A<sub>2</sub>BXY<sub>2</sub> (A = K, Na; B = Li, Na; X = Al, Ga, In; Y = P, As, Sb) have a pronounced layered structure. We predict their 2D structures and properties, using first-principles calculations. Lower exfoliation energies confirm the feasibility of mechanical exfoliation from their bulk phases and that the 2D structures can be stabilized independently at room temperature. Interestingly, A<sub>2</sub>BXY<sub>2</sub> has an anionic tetrahedral one-dimensional chain or two-dimensional mesh structure of [XY<sub>2</sub>]<sup>3-</sup> composed of elements III-V. All A<sub>2</sub>BXY<sub>2</sub> monolayers exhibit direct or indirect band gap features (0.78-1.94 eV). More encouragingly, the A<sub>2</sub>BXY<sub>2</sub> monolayers possess ultrahigh carrier mobilities (∼10<sup>5</sup> cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>) at room temperature. Furthermore, the results based on the nonequilibrium Green's function indicate that 2D A<sub>2</sub>BXY<sub>2</sub> exhibits a high ON/OFF ratio (∼10<sup>4</sup>). To sum up, the A<sub>2</sub>BXY<sub>2</sub> family is an outstanding promising candidate for optoelectronics application.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69744-69757"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16683","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Expanding material types and developing two-dimensional (2D) semiconductor materials with high performance have been hotspots in the field. In this research, it is found that the 12 existing semiconductors A2BXY2 (A = K, Na; B = Li, Na; X = Al, Ga, In; Y = P, As, Sb) have a pronounced layered structure. We predict their 2D structures and properties, using first-principles calculations. Lower exfoliation energies confirm the feasibility of mechanical exfoliation from their bulk phases and that the 2D structures can be stabilized independently at room temperature. Interestingly, A2BXY2 has an anionic tetrahedral one-dimensional chain or two-dimensional mesh structure of [XY2]3- composed of elements III-V. All A2BXY2 monolayers exhibit direct or indirect band gap features (0.78-1.94 eV). More encouragingly, the A2BXY2 monolayers possess ultrahigh carrier mobilities (∼105 cm2 V-1 s-1) at room temperature. Furthermore, the results based on the nonequilibrium Green's function indicate that 2D A2BXY2 exhibits a high ON/OFF ratio (∼104). To sum up, the A2BXY2 family is an outstanding promising candidate for optoelectronics application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信