Photonic-crystal surface-emitting lasers

Susumu Noda, Masahiro Yoshida, Takuya Inoue, Menaka De Zoysa, Kenji Ishizaki, Ryoichi Sakata
{"title":"Photonic-crystal surface-emitting lasers","authors":"Susumu Noda, Masahiro Yoshida, Takuya Inoue, Menaka De Zoysa, Kenji Ishizaki, Ryoichi Sakata","doi":"10.1038/s44287-024-00113-x","DOIUrl":null,"url":null,"abstract":"High-performance lasers are important to realize a range of applications including smart mobility and smart manufacturing, for example, through their uses in key technologies such as light detection and ranging (LiDAR) and laser processing. However, existing lasers have a number of performance limitations that hinder their practical use. For example, conventional semiconductor lasers are associated with low brightness and low functionality, even though they are compact and highly efficient. Conventional semiconductor lasers therefore require external optics and mechanical elements for reshaping and scanning of emitted beams, resulting in large, complicated systems for various practical uses. Furthermore, even with such external elements, the brightness of these lasers cannot be sufficiently increased for use in laser processing. Similarly, gas and solid-state lasers, while having high-brightness, are also large and complicated. Photonic-crystal surface-emitting lasers (PCSELs) boast both high brightness and high functionality while maintaining the merits of semiconductor lasers, and thus PCSELs are solutions to the issues of existing laser technologies. In this Review, we discuss recent progress of PCSELs towards high-brightness and high-functionality operations. We then elaborate on new trends such as short-pulse and short-wavelength operations as well as the combination with machine learning and quantum technologies. Finally, we outline future research directions of PCSELs with regard to various applications, including not only LiDAR and laser processing, as described above, but also communications, mobile technologies, and even aerospace and laser fusion. This Review surveys recent progress in photonic-crystal surface-emitting laser development and applications, including high-brightness, high-functionality, short-pulse and short-wavelength operations, and smart integration with machine learning.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 12","pages":"802-814"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00113-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance lasers are important to realize a range of applications including smart mobility and smart manufacturing, for example, through their uses in key technologies such as light detection and ranging (LiDAR) and laser processing. However, existing lasers have a number of performance limitations that hinder their practical use. For example, conventional semiconductor lasers are associated with low brightness and low functionality, even though they are compact and highly efficient. Conventional semiconductor lasers therefore require external optics and mechanical elements for reshaping and scanning of emitted beams, resulting in large, complicated systems for various practical uses. Furthermore, even with such external elements, the brightness of these lasers cannot be sufficiently increased for use in laser processing. Similarly, gas and solid-state lasers, while having high-brightness, are also large and complicated. Photonic-crystal surface-emitting lasers (PCSELs) boast both high brightness and high functionality while maintaining the merits of semiconductor lasers, and thus PCSELs are solutions to the issues of existing laser technologies. In this Review, we discuss recent progress of PCSELs towards high-brightness and high-functionality operations. We then elaborate on new trends such as short-pulse and short-wavelength operations as well as the combination with machine learning and quantum technologies. Finally, we outline future research directions of PCSELs with regard to various applications, including not only LiDAR and laser processing, as described above, but also communications, mobile technologies, and even aerospace and laser fusion. This Review surveys recent progress in photonic-crystal surface-emitting laser development and applications, including high-brightness, high-functionality, short-pulse and short-wavelength operations, and smart integration with machine learning.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信