High-temperature superconductors and their large-scale applications

Tim A. Coombs, Qi Wang, Adil Shah, Jintao Hu, Luning Hao, Ismail Patel, Haigening Wei, Yuyang Wu, Thomas Coombs, Wei Wang
{"title":"High-temperature superconductors and their large-scale applications","authors":"Tim A. Coombs, Qi Wang, Adil Shah, Jintao Hu, Luning Hao, Ismail Patel, Haigening Wei, Yuyang Wu, Thomas Coombs, Wei Wang","doi":"10.1038/s44287-024-00112-y","DOIUrl":null,"url":null,"abstract":"For decades, superconductor materials have promised high power, high efficiency and compact machines. However, as of 2024, commercial applications are limited. One of the few successful examples is represented by low-temperature superconductor (LTS) materials that are used for magnetic resonance imaging (MRI) in hospitals worldwide. High-temperature superconductors (HTSs) can support currents and magnetic fields at least an order of magnitude higher than those available from LTSs and non-superconducting conventional materials, such as copper. However, HTSs are seldom used, even if there are important areas where these materials could perform better than conventional ones or LTSs. For example, HTSs can replace conventional materials in wind turbines and aeroplane motor engines to improve power-to-weight ratios. In tokamak fusion reactors, HTSs might enable sustainable positive power outputs. Additionally, in medicine, HTSs might replace LTSs for smaller MRI machines, producing high-resolution images, without the need to use a scarce resource such as helium (fundamental for LTSs). The primary barriers to deployment are alternating current loss, quench, heat losses and costs. Developments in HTS manufacture have the potential to overcome these barriers. In this Review, we set out the problems, describe the potential of the technology and offer (some) solutions. High-temperature superconductors are now used mostly in large-scale applications, such as magnets and scientific apparatus. Overcoming barriers such as alternating current losses, or high manufacturing costs, will enable many more applications such as motors, generators and fusion reactors.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 12","pages":"788-801"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00112-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For decades, superconductor materials have promised high power, high efficiency and compact machines. However, as of 2024, commercial applications are limited. One of the few successful examples is represented by low-temperature superconductor (LTS) materials that are used for magnetic resonance imaging (MRI) in hospitals worldwide. High-temperature superconductors (HTSs) can support currents and magnetic fields at least an order of magnitude higher than those available from LTSs and non-superconducting conventional materials, such as copper. However, HTSs are seldom used, even if there are important areas where these materials could perform better than conventional ones or LTSs. For example, HTSs can replace conventional materials in wind turbines and aeroplane motor engines to improve power-to-weight ratios. In tokamak fusion reactors, HTSs might enable sustainable positive power outputs. Additionally, in medicine, HTSs might replace LTSs for smaller MRI machines, producing high-resolution images, without the need to use a scarce resource such as helium (fundamental for LTSs). The primary barriers to deployment are alternating current loss, quench, heat losses and costs. Developments in HTS manufacture have the potential to overcome these barriers. In this Review, we set out the problems, describe the potential of the technology and offer (some) solutions. High-temperature superconductors are now used mostly in large-scale applications, such as magnets and scientific apparatus. Overcoming barriers such as alternating current losses, or high manufacturing costs, will enable many more applications such as motors, generators and fusion reactors.

Abstract Image

高温超导体及其大规模应用
几十年来,超导体材料承诺了高功率、高效率和紧凑的机器。然而,到2024年,商业应用是有限的。低温超导体(LTS)材料是为数不多的成功例子之一,它被用于世界各地医院的磁共振成像(MRI)。高温超导体(HTSs)可以支持的电流和磁场至少比LTSs和非超导传统材料(如铜)高一个数量级。然而,hts很少被使用,即使在一些重要的领域,这些材料可以比传统材料或lts表现得更好。例如,高温超导可以取代风力涡轮机和飞机发动机中的传统材料,以提高功率重量比。在托卡马克聚变反应堆中,高温超导可能会实现持续的正功率输出。此外,在医学领域,hts可能会取代小型MRI机器的lts,产生高分辨率图像,而不需要使用稀缺资源,如氦(lts的基础)。部署的主要障碍是交流电损耗、淬火、热损耗和成本。高温超导制造的发展有可能克服这些障碍。在这篇综述中,我们列出了问题,描述了该技术的潜力,并提供了(一些)解决方案。高温超导体现在主要用于大规模应用,如磁铁和科学仪器。克服诸如交流电损耗或高制造成本等障碍,将使电机、发电机和聚变反应堆等更多应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信