Serena Lipari, Karthik Balaguru, Julian Rice, Sha Feng, Wenwei Xu, Larry K. Berg, David Judi
{"title":"Amplified threat of tropical cyclones to US offshore wind energy in a changing climate","authors":"Serena Lipari, Karthik Balaguru, Julian Rice, Sha Feng, Wenwei Xu, Larry K. Berg, David Judi","doi":"10.1038/s43247-024-01887-6","DOIUrl":null,"url":null,"abstract":"The vulnerability of US offshore wind energy to tropical cyclones is a pressing concern, particularly along the Atlantic and Gulf Coasts, key areas for offshore wind energy development. Assessing the impact of projected climate change on tropical cyclones, and consequently on offshore wind resources, is thus critical for effective risk management. Herein, we investigate the evolving risk to offshore wind turbines posed by Atlantic tropical cyclones in a non-stationary climate using a synthetic tropical cyclone model. Integrated with climate model simulations, projections show widespread increases in tropical cyclone exposure, with historical 20-year storms occurring every ~12.7 years on average, increasing in intensity by about 9.3 ms−1. Subsequent fragility analysis reveals that the probabilities of turbine yielding and buckling from a 20-year tropical cyclone could increase by about 37% and 13%, respectively, with regional increases reaching up to 51%. These findings carry substantial implications for the operation and future expansion of offshore wind farms. Climate change increases US offshore wind energy vulnerability to tropical cyclones, with turbine yielding and buckling probabilities rising by 37% and 13% resulting from a 20-year storm, according to a synthetic tropical cyclone model analysis.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01887-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01887-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The vulnerability of US offshore wind energy to tropical cyclones is a pressing concern, particularly along the Atlantic and Gulf Coasts, key areas for offshore wind energy development. Assessing the impact of projected climate change on tropical cyclones, and consequently on offshore wind resources, is thus critical for effective risk management. Herein, we investigate the evolving risk to offshore wind turbines posed by Atlantic tropical cyclones in a non-stationary climate using a synthetic tropical cyclone model. Integrated with climate model simulations, projections show widespread increases in tropical cyclone exposure, with historical 20-year storms occurring every ~12.7 years on average, increasing in intensity by about 9.3 ms−1. Subsequent fragility analysis reveals that the probabilities of turbine yielding and buckling from a 20-year tropical cyclone could increase by about 37% and 13%, respectively, with regional increases reaching up to 51%. These findings carry substantial implications for the operation and future expansion of offshore wind farms. Climate change increases US offshore wind energy vulnerability to tropical cyclones, with turbine yielding and buckling probabilities rising by 37% and 13% resulting from a 20-year storm, according to a synthetic tropical cyclone model analysis.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.