Isotopic evidence for preferential transport of fertilizer nitrogen into the northern Gulf of Mexico during high water discharge

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Jian-Jhih Chen, Gen K. Li, Marcus Lin, Justin A. Nghiem, Ziyue Yu, Tianshu Kong, Heather A. Donnelly, Noah P. Snyder, Hanqin Tian, Michael P. Lamb, Xingchen Tony Wang
{"title":"Isotopic evidence for preferential transport of fertilizer nitrogen into the northern Gulf of Mexico during high water discharge","authors":"Jian-Jhih Chen, Gen K. Li, Marcus Lin, Justin A. Nghiem, Ziyue Yu, Tianshu Kong, Heather A. Donnelly, Noah P. Snyder, Hanqin Tian, Michael P. Lamb, Xingchen Tony Wang","doi":"10.1038/s43247-024-01873-y","DOIUrl":null,"url":null,"abstract":"Anthropogenic nitrogen inputs from the Mississippi-Atchafalaya River Basin have caused substantial environmental challenges in the northern Gulf of Mexico, such as coastal eutrophication, harmful algal blooms, and seasonal hypoxia. Addressing these issues requires a better understanding of the complex sources of nitrogen, which include fertilizers, groundwater, manure, and sewage. In this study, we analyzed the nitrogen isotopic composition of dissolved nitrate and particulate nitrogen from the Wax Lake Delta, a major distributary of the Mississippi-Atchafalaya River Basin that flows into the Gulf of Mexico. Our findings revealed that during the wet season, δ15N values of both nitrate and particulate nitrogen were consistently 2-3‰ lower compared to the dry season. This suggests that fertilizer-derived nitrogen, which has lower δ15N, is predominantly exported to the Gulf of Mexico during periods of high water discharge. These findings imply that adjusting fertilizer application timing could help reduce nitrogen loading and mitigate its environmental impact on the Gulf of Mexico. Fertilizer-derived nitrogen with low isotopic nitrate and particular matter values is mainly exported to the Gulf of Mexico during wet season, according to an analysis combining hydrographic and nutrient data, and isotope samples.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01873-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01873-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic nitrogen inputs from the Mississippi-Atchafalaya River Basin have caused substantial environmental challenges in the northern Gulf of Mexico, such as coastal eutrophication, harmful algal blooms, and seasonal hypoxia. Addressing these issues requires a better understanding of the complex sources of nitrogen, which include fertilizers, groundwater, manure, and sewage. In this study, we analyzed the nitrogen isotopic composition of dissolved nitrate and particulate nitrogen from the Wax Lake Delta, a major distributary of the Mississippi-Atchafalaya River Basin that flows into the Gulf of Mexico. Our findings revealed that during the wet season, δ15N values of both nitrate and particulate nitrogen were consistently 2-3‰ lower compared to the dry season. This suggests that fertilizer-derived nitrogen, which has lower δ15N, is predominantly exported to the Gulf of Mexico during periods of high water discharge. These findings imply that adjusting fertilizer application timing could help reduce nitrogen loading and mitigate its environmental impact on the Gulf of Mexico. Fertilizer-derived nitrogen with low isotopic nitrate and particular matter values is mainly exported to the Gulf of Mexico during wet season, according to an analysis combining hydrographic and nutrient data, and isotope samples.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信