Van Duc Bui, Tan Phat Dao, Thi Huong Vu, Van Thang Vu, Lalitha Gnanasekaran, Yasser Vasseghian, Sang-Woo Joo
{"title":"Ruthenium-doped metal–organic frameworks for green hydrogen generation on a glassy carbon electrode by enhanced electrochemical water splitting","authors":"Van Duc Bui, Tan Phat Dao, Thi Huong Vu, Van Thang Vu, Lalitha Gnanasekaran, Yasser Vasseghian, Sang-Woo Joo","doi":"10.1007/s42114-024-01091-2","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the effectiveness and stability of the hydrogen evolution reaction (HER) process, Ru-loaded MIL-101 (Fe) metal–organic frameworks (MOFs) were grown as a coating on a glassy carbon electrode. The synthesized composites were analyzed by spectroscopic and microscopic tools as well as elemental analysis and isotherm studies. The two catalysts of Ru-MIL-101 (Cr) and Ru-MIL-101 (Fe) MOFs were designed to enhance the stability and efficiency of the HER. The incorporation of Ru into MIL-101 (Fe) resulted in a twofold increase in the catalytic efficiency for splitting water into hydrogen gas compared to that of pristine MIL-101. Electrochemical impedance spectroscopy (EIS), cycling voltammetry (CV), linear sweep voltammetry (LSV), and Tafel plots were used to compare the hydrogen-producing catalytic performance in water splitting. The electrochemical double-layer capacitances (C<sub>dl</sub>) for the variations of HER performance of MIL-101 (Fe) with a Ru percentage of 30% towards HER showed a low potential of 154 mV at 10 mA cm<sup>−2</sup> in 1 M H<sub>2</sub>SO<sub>4</sub>, along with improved reaction kinetics for a Ru with a less percentage of 10% as evidenced by the Tafel slope analysis. In addition, Ru 20% MIL-101 (Fe) exhibited high stability during repetitive potential cycling (5000 cycles).</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01091-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the effectiveness and stability of the hydrogen evolution reaction (HER) process, Ru-loaded MIL-101 (Fe) metal–organic frameworks (MOFs) were grown as a coating on a glassy carbon electrode. The synthesized composites were analyzed by spectroscopic and microscopic tools as well as elemental analysis and isotherm studies. The two catalysts of Ru-MIL-101 (Cr) and Ru-MIL-101 (Fe) MOFs were designed to enhance the stability and efficiency of the HER. The incorporation of Ru into MIL-101 (Fe) resulted in a twofold increase in the catalytic efficiency for splitting water into hydrogen gas compared to that of pristine MIL-101. Electrochemical impedance spectroscopy (EIS), cycling voltammetry (CV), linear sweep voltammetry (LSV), and Tafel plots were used to compare the hydrogen-producing catalytic performance in water splitting. The electrochemical double-layer capacitances (Cdl) for the variations of HER performance of MIL-101 (Fe) with a Ru percentage of 30% towards HER showed a low potential of 154 mV at 10 mA cm−2 in 1 M H2SO4, along with improved reaction kinetics for a Ru with a less percentage of 10% as evidenced by the Tafel slope analysis. In addition, Ru 20% MIL-101 (Fe) exhibited high stability during repetitive potential cycling (5000 cycles).
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.