Enhancements in Vertical Instability Control for the HL-3 Tokamak

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Panle Liu, Bo Li, Xiang Chen, Shaoyong Liang, Qiang Li, Junzhao Zhang, Yihang Chen, Da Li
{"title":"Enhancements in Vertical Instability Control for the HL-3 Tokamak","authors":"Panle Liu,&nbsp;Bo Li,&nbsp;Xiang Chen,&nbsp;Shaoyong Liang,&nbsp;Qiang Li,&nbsp;Junzhao Zhang,&nbsp;Yihang Chen,&nbsp;Da Li","doi":"10.1007/s10894-024-00473-0","DOIUrl":null,"url":null,"abstract":"<div><p>Vertical position control of tokamak plasmas is essential for exploring operational limits and ensuring stable operation at high elongations to avoid disruptions. This study focuses on improving vertical instability control in the HL-3 tokamak by enhancing the signal-to-noise ratio of control signals and optimizing control strategies. We employed improved diagnostic techniques using Mirnov coils and flux loops, combined with digital filtering technology, to mitigate the effects of power supply switching and measurement noise. The vertical stabilization (VS) control system was upgraded with an optimized low-pass filter for vertical position estimation, a novel method for vertical velocity estimation using direct voltage signals from diagnostics, and an improved control algorithm. These enhancements resulted in significant improvements in control precision and noise reduction. Experimental results demonstrated successful control of highly elongated plasmas (<span>\\(\\kappa \\)</span> up to 1.8) with high plasma currents (up to 1.6 MA), achieving vertical position control accuracy better than 1 cm during the plasma current ramp-up phase. These advancements expand the operational parameter space of HL-3, paving the way for higher performance plasma operation.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-024-00473-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical position control of tokamak plasmas is essential for exploring operational limits and ensuring stable operation at high elongations to avoid disruptions. This study focuses on improving vertical instability control in the HL-3 tokamak by enhancing the signal-to-noise ratio of control signals and optimizing control strategies. We employed improved diagnostic techniques using Mirnov coils and flux loops, combined with digital filtering technology, to mitigate the effects of power supply switching and measurement noise. The vertical stabilization (VS) control system was upgraded with an optimized low-pass filter for vertical position estimation, a novel method for vertical velocity estimation using direct voltage signals from diagnostics, and an improved control algorithm. These enhancements resulted in significant improvements in control precision and noise reduction. Experimental results demonstrated successful control of highly elongated plasmas (\(\kappa \) up to 1.8) with high plasma currents (up to 1.6 MA), achieving vertical position control accuracy better than 1 cm during the plasma current ramp-up phase. These advancements expand the operational parameter space of HL-3, paving the way for higher performance plasma operation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信