A four-channel microfluidic model of the blood–brain and blood–cerebrospinal fluid barriers: fluid dynamics analysis

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Pavel A. Libet, Leonid Y. Polynkin, Mikis R. Saridis, Egor V. Yakovlev, Sofia A. Korsakova, Alla B. Salmina, Anton S. Averchuk, Natalia A. Rozanova, Stanislav O. Yurchenko
{"title":"A four-channel microfluidic model of the blood–brain and blood–cerebrospinal fluid barriers: fluid dynamics analysis","authors":"Pavel A. Libet,&nbsp;Leonid Y. Polynkin,&nbsp;Mikis R. Saridis,&nbsp;Egor V. Yakovlev,&nbsp;Sofia A. Korsakova,&nbsp;Alla B. Salmina,&nbsp;Anton S. Averchuk,&nbsp;Natalia A. Rozanova,&nbsp;Stanislav O. Yurchenko","doi":"10.1186/s40486-024-00219-9","DOIUrl":null,"url":null,"abstract":"<div><p>Brain-on-a-chip is an emerging field involving microfluidic devices capable of mimicking the structure and function of the human brain. Existing research often focuses on single barriers, such as the blood–brain barrier or blood–cerebrospinal fluid barrier (BCSFB). However, the brain has both barriers working together, and mimicking this dual system is crucial for better understanding of brain (patho)physiology. In this work, we present a four-channel microfluidic chip model that incorporates both the BBB and BCSFB, to reproduce physiologically correct architecture. Using computer simulations, we demonstrate that this model can mimic both healthy and diseased states by adjusting the shear stress experienced by the barriers, which is a key factor in their function. These findings offer valuable insights for designing future brain-on-a-chip devices with improved accuracy. This improved technology could contribute to wider advancements in tissue engineering and the study of brain function and diseases.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"12 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00219-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-024-00219-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-on-a-chip is an emerging field involving microfluidic devices capable of mimicking the structure and function of the human brain. Existing research often focuses on single barriers, such as the blood–brain barrier or blood–cerebrospinal fluid barrier (BCSFB). However, the brain has both barriers working together, and mimicking this dual system is crucial for better understanding of brain (patho)physiology. In this work, we present a four-channel microfluidic chip model that incorporates both the BBB and BCSFB, to reproduce physiologically correct architecture. Using computer simulations, we demonstrate that this model can mimic both healthy and diseased states by adjusting the shear stress experienced by the barriers, which is a key factor in their function. These findings offer valuable insights for designing future brain-on-a-chip devices with improved accuracy. This improved technology could contribute to wider advancements in tissue engineering and the study of brain function and diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信