Mn, N co-doped CDs as a fluorescent nanosensing platform for the detection of tannic acid and hafnium ion and in vitro fluorescence imaging of U2OS osteosarcoma cells
{"title":"Mn, N co-doped CDs as a fluorescent nanosensing platform for the detection of tannic acid and hafnium ion and in vitro fluorescence imaging of U2OS osteosarcoma cells","authors":"Xue-Lin Zhao, Sen-Zhen Wang, Lihua Zhang, Zhen Wang, Jin-Yan Huang, Song Liao, Min Lu, Zhi Yang, Xing-Jun Zhao, Zi-Yi Zhao, Zi-Xuan Guo, Lu-Nan Zhang, Pei-De Zhu, Meng Xu","doi":"10.1007/s00604-024-06848-6","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-wavelength emission fluorescent manganese-nitrogen co-doped carbon dots (Mn, N co-doped CDs) were synthesized by solvothermal method using <i>β</i>-cyclodextrin, O-phenylenediamine, and manganese chloride as raw materials. The prepared Mn, N co-doped CDs were used as fluorescent nanosensing platforms for the detection of metal ions and biomolecules and were found to be capable of fluorescence detection of tannic acid (TA) and hafnium (Hf) ion at 320, 380, and 480 nm excitation wavelengths with multi-response linear ranges of 0.7 ~ 1.2 µM and 6.35 ~ 13 µM and detection limits of 0.45 µM and 6.3 µM, respectively. The wide linear ranges and low detection limits may be due to the fluorescence resonance energy transfer effect between the platform and TA and Hf ions. In addition, it was found that Mn, N co-doped CDs had good photostability, biocompatibility, and low cytotoxicity, which could be used for in vitro fluorescence imaging of exogenous TA and Hf ion imaging in U2OS osteosarcoma cells. Thus, the probe has a promising application in biomedical fields as a new multi-responsive fluorescence nanosensing platform member.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-024-06848-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06848-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-wavelength emission fluorescent manganese-nitrogen co-doped carbon dots (Mn, N co-doped CDs) were synthesized by solvothermal method using β-cyclodextrin, O-phenylenediamine, and manganese chloride as raw materials. The prepared Mn, N co-doped CDs were used as fluorescent nanosensing platforms for the detection of metal ions and biomolecules and were found to be capable of fluorescence detection of tannic acid (TA) and hafnium (Hf) ion at 320, 380, and 480 nm excitation wavelengths with multi-response linear ranges of 0.7 ~ 1.2 µM and 6.35 ~ 13 µM and detection limits of 0.45 µM and 6.3 µM, respectively. The wide linear ranges and low detection limits may be due to the fluorescence resonance energy transfer effect between the platform and TA and Hf ions. In addition, it was found that Mn, N co-doped CDs had good photostability, biocompatibility, and low cytotoxicity, which could be used for in vitro fluorescence imaging of exogenous TA and Hf ion imaging in U2OS osteosarcoma cells. Thus, the probe has a promising application in biomedical fields as a new multi-responsive fluorescence nanosensing platform member.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.