Gold nanoparticle encapsulated hybrid MOF: synthesis, characterization, and co-drug delivery of 5-fluorouracil and curcumin

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pranita Rananaware, Parimal Pandit, Varsha Brahmkhatri
{"title":"Gold nanoparticle encapsulated hybrid MOF: synthesis, characterization, and co-drug delivery of 5-fluorouracil and curcumin","authors":"Pranita Rananaware,&nbsp;Parimal Pandit,&nbsp;Varsha Brahmkhatri","doi":"10.1186/s11671-024-04152-z","DOIUrl":null,"url":null,"abstract":"<div><p>The unique features of Metal–Organic Frameworks (MOFs), including structural flexibility, high surface area, and variable pore size, have drawn attention in cancer therapy. However, despite advances in surface functionalization, engineering structural features, and porosity, achieving controlled release, stability, scalability, and toxicity remains a challenge. The current study reports gold nanoparticle (AuNP) encapsulated dual metal–organic frameworks (MOFs) comprising zeolitic imidazolate (ZIF8) and cobalt-imidazole (ZIF67) by a simple precipitation method for dual drug delivery applications. This combination associates the advantages of AuNPs and MOFs, creating a potent platform for cancer theranostics that combines diagnosis and treatment into one unit. The synthesized composite (AuNPs@ZIF-8/ZIF-67) is functionalized with Folic acid (FA) and loaded with the anticancer agents Curcumin (C) and 5-fluorouracil (5-FU) for co-drug delivery The synthesized composites, namely Au/ZIF8, Au/ZIF8/ZIF67/FA, Au/ZIF8/ZIF67/FA/5-FU, and Au/ZIF8/ZIF67/FA/5-FU/C were characterized using diverse analytical techniques such as FESEM, XRD, FTIR, TEM, and BET. The characterization methods showed that the hybrid MOF structure was stable and intact after AuNP encapsulation and drug loading. The dual MOF composite exhibits a better affinity for loading C and 5-FU with 60% and 40% drug loading capacity, respectively. The simultaneous drug release studies suggest that AuNPs@ZIF-8/ZIF-67 are more responsive to the acidic pH and show a higher cumulative drug release of 5FU and C at the lower value of pH 5. For further validation, the release kinetics data were fitted into the Korsmeyer-Peppas model in the current study. The observed value of n which is less than 0.5 suggests the pseudo-Fickian diffusion mechanism for drug release, demonstrating long-term release of 5FU and C from Au/ZIF8/ZIF67/FA/5-FU/C. The targeted drug delivery system is anticipated to display synergistic therapeutic efficacy from the combined effect of the two anticancer agents and the pH-responsive nature of ZIF systems.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04152-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04152-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unique features of Metal–Organic Frameworks (MOFs), including structural flexibility, high surface area, and variable pore size, have drawn attention in cancer therapy. However, despite advances in surface functionalization, engineering structural features, and porosity, achieving controlled release, stability, scalability, and toxicity remains a challenge. The current study reports gold nanoparticle (AuNP) encapsulated dual metal–organic frameworks (MOFs) comprising zeolitic imidazolate (ZIF8) and cobalt-imidazole (ZIF67) by a simple precipitation method for dual drug delivery applications. This combination associates the advantages of AuNPs and MOFs, creating a potent platform for cancer theranostics that combines diagnosis and treatment into one unit. The synthesized composite (AuNPs@ZIF-8/ZIF-67) is functionalized with Folic acid (FA) and loaded with the anticancer agents Curcumin (C) and 5-fluorouracil (5-FU) for co-drug delivery The synthesized composites, namely Au/ZIF8, Au/ZIF8/ZIF67/FA, Au/ZIF8/ZIF67/FA/5-FU, and Au/ZIF8/ZIF67/FA/5-FU/C were characterized using diverse analytical techniques such as FESEM, XRD, FTIR, TEM, and BET. The characterization methods showed that the hybrid MOF structure was stable and intact after AuNP encapsulation and drug loading. The dual MOF composite exhibits a better affinity for loading C and 5-FU with 60% and 40% drug loading capacity, respectively. The simultaneous drug release studies suggest that AuNPs@ZIF-8/ZIF-67 are more responsive to the acidic pH and show a higher cumulative drug release of 5FU and C at the lower value of pH 5. For further validation, the release kinetics data were fitted into the Korsmeyer-Peppas model in the current study. The observed value of n which is less than 0.5 suggests the pseudo-Fickian diffusion mechanism for drug release, demonstrating long-term release of 5FU and C from Au/ZIF8/ZIF67/FA/5-FU/C. The targeted drug delivery system is anticipated to display synergistic therapeutic efficacy from the combined effect of the two anticancer agents and the pH-responsive nature of ZIF systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信