Semie Kim, Pyeong-Gon Jung, Young-Il Lim, Youn Kim, Youngdo Yang, Sang Tae Park
{"title":"Economic and Environmental Analyses of Biodiesel Production Processes From Unused Low-grade Oil","authors":"Semie Kim, Pyeong-Gon Jung, Young-Il Lim, Youn Kim, Youngdo Yang, Sang Tae Park","doi":"10.1007/s12155-024-10805-9","DOIUrl":null,"url":null,"abstract":"<div><p>Two two-step transesterification processes are presented for biodiesel (BD) production from 300 t/d unused low-grade oil (LGO) with 24.5 wt% of free fatty acid (FFA). Acid-catalyzed (case 1) and enzymatic (case 2) esterifications were used for FFA reduction. The FFA in LGO was converted into fatty acid methyl esters (FAME) by H<sub>2</sub>SO<sub>4</sub>-catalyzed esterification (case 1) or transformed into sodium salts (soap) via a neutralization reaction with NaOH (case 2). In case 2, FFA was separated from soap and transformed into monoesters via enzymatic esterification. The two de-acidification processes decreased the FFA content of LGO to 0.5 wt%, enabling the production of 294 t-BD/d through subsequent alkali-catalyzed transesterification. Case 2, using an enzyme, was proposed to reduce the concentration of H<sub>2</sub>SO<sub>4</sub>, resulting in less corrosion to downstream equipment. The total production cost of case 2 ($62 million/y) was 32% higher than that of case 1 ($47 million/y) because of the greater consumption of CH<sub>3</sub>OH, H<sub>2</sub>SO<sub>4</sub>, NaOH, and enzyme during FFA reduction. The total capital investment for case 2 ($41 million) exceeded that of case 1 ($31 million). Consequently, the minimum fuel selling price of case 2 (0.58 $/kg-BD) is higher than that of case 1 (0.42 $/kg-BD). The net CO<sub>2</sub> emissions reduction of the produced BD is 2.47 kg-CO<sub>2</sub>/kg-BD for case 1 and 2.34 kg-CO<sub>2</sub>/kg-BD for case 2. Given the variability in the acidity and composition of the feedstocks, future studies should include comparative economic and environmental analyses of various raw materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10805-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Two two-step transesterification processes are presented for biodiesel (BD) production from 300 t/d unused low-grade oil (LGO) with 24.5 wt% of free fatty acid (FFA). Acid-catalyzed (case 1) and enzymatic (case 2) esterifications were used for FFA reduction. The FFA in LGO was converted into fatty acid methyl esters (FAME) by H2SO4-catalyzed esterification (case 1) or transformed into sodium salts (soap) via a neutralization reaction with NaOH (case 2). In case 2, FFA was separated from soap and transformed into monoesters via enzymatic esterification. The two de-acidification processes decreased the FFA content of LGO to 0.5 wt%, enabling the production of 294 t-BD/d through subsequent alkali-catalyzed transesterification. Case 2, using an enzyme, was proposed to reduce the concentration of H2SO4, resulting in less corrosion to downstream equipment. The total production cost of case 2 ($62 million/y) was 32% higher than that of case 1 ($47 million/y) because of the greater consumption of CH3OH, H2SO4, NaOH, and enzyme during FFA reduction. The total capital investment for case 2 ($41 million) exceeded that of case 1 ($31 million). Consequently, the minimum fuel selling price of case 2 (0.58 $/kg-BD) is higher than that of case 1 (0.42 $/kg-BD). The net CO2 emissions reduction of the produced BD is 2.47 kg-CO2/kg-BD for case 1 and 2.34 kg-CO2/kg-BD for case 2. Given the variability in the acidity and composition of the feedstocks, future studies should include comparative economic and environmental analyses of various raw materials.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.