Effect of Perovskite Active Layer Thickness on the Performance of Photovoltaic Cells and Radiation Detectors

IF 2.9 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sung-Pil Yoon, Sung-Jun Park, Ahreum Park, Jangwon Byun, Beomjun Park, Man-Jong Lee
{"title":"Effect of Perovskite Active Layer Thickness on the Performance of Photovoltaic Cells and Radiation Detectors","authors":"Sung-Pil Yoon,&nbsp;Sung-Jun Park,&nbsp;Ahreum Park,&nbsp;Jangwon Byun,&nbsp;Beomjun Park,&nbsp;Man-Jong Lee","doi":"10.1007/s11814-024-00330-y","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite materials are used as the core active layer in a variety of devices, including solar cells and radiation detectors, and the performance of these devices is strongly influenced by the thickness of the perovskite active layer. This study compares the performance of photovoltaic cells and radiation detectors with the same device architecture but different perovskite active layer thicknesses. For perovskite solar cells, the power conversion efficiency (PCE) tends to increase with increasing active layer thickness and then decreases beyond a certain limit. On the other hand, the X-ray response characteristics of perovskite X-ray detectors tend to increase continuously with increasing active layer thickness. This means that the collections of total charges generated by photon or radiation are different, and their collection/recombination mechanisms of the charges generated in the perovskite active layer of each device are different. To realize efficient perovskite-based electro-optical devices, optimization of the device architecture, including the active layer thickness, is essential, and this work aims to provide a direction for the development of X-ray detectors in n-i-p device structures.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 14","pages":"3783 - 3789"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00330-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite materials are used as the core active layer in a variety of devices, including solar cells and radiation detectors, and the performance of these devices is strongly influenced by the thickness of the perovskite active layer. This study compares the performance of photovoltaic cells and radiation detectors with the same device architecture but different perovskite active layer thicknesses. For perovskite solar cells, the power conversion efficiency (PCE) tends to increase with increasing active layer thickness and then decreases beyond a certain limit. On the other hand, the X-ray response characteristics of perovskite X-ray detectors tend to increase continuously with increasing active layer thickness. This means that the collections of total charges generated by photon or radiation are different, and their collection/recombination mechanisms of the charges generated in the perovskite active layer of each device are different. To realize efficient perovskite-based electro-optical devices, optimization of the device architecture, including the active layer thickness, is essential, and this work aims to provide a direction for the development of X-ray detectors in n-i-p device structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信