Sung-Pil Yoon, Sung-Jun Park, Ahreum Park, Jangwon Byun, Beomjun Park, Man-Jong Lee
{"title":"Effect of Perovskite Active Layer Thickness on the Performance of Photovoltaic Cells and Radiation Detectors","authors":"Sung-Pil Yoon, Sung-Jun Park, Ahreum Park, Jangwon Byun, Beomjun Park, Man-Jong Lee","doi":"10.1007/s11814-024-00330-y","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite materials are used as the core active layer in a variety of devices, including solar cells and radiation detectors, and the performance of these devices is strongly influenced by the thickness of the perovskite active layer. This study compares the performance of photovoltaic cells and radiation detectors with the same device architecture but different perovskite active layer thicknesses. For perovskite solar cells, the power conversion efficiency (PCE) tends to increase with increasing active layer thickness and then decreases beyond a certain limit. On the other hand, the X-ray response characteristics of perovskite X-ray detectors tend to increase continuously with increasing active layer thickness. This means that the collections of total charges generated by photon or radiation are different, and their collection/recombination mechanisms of the charges generated in the perovskite active layer of each device are different. To realize efficient perovskite-based electro-optical devices, optimization of the device architecture, including the active layer thickness, is essential, and this work aims to provide a direction for the development of X-ray detectors in n-i-p device structures.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 14","pages":"3783 - 3789"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00330-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite materials are used as the core active layer in a variety of devices, including solar cells and radiation detectors, and the performance of these devices is strongly influenced by the thickness of the perovskite active layer. This study compares the performance of photovoltaic cells and radiation detectors with the same device architecture but different perovskite active layer thicknesses. For perovskite solar cells, the power conversion efficiency (PCE) tends to increase with increasing active layer thickness and then decreases beyond a certain limit. On the other hand, the X-ray response characteristics of perovskite X-ray detectors tend to increase continuously with increasing active layer thickness. This means that the collections of total charges generated by photon or radiation are different, and their collection/recombination mechanisms of the charges generated in the perovskite active layer of each device are different. To realize efficient perovskite-based electro-optical devices, optimization of the device architecture, including the active layer thickness, is essential, and this work aims to provide a direction for the development of X-ray detectors in n-i-p device structures.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.