A Dynamical Yukawa\(_{2}\) Model

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ajay Chandra, Martin Hairer, Martin Peev
{"title":"A Dynamical Yukawa\\(_{2}\\) Model","authors":"Ajay Chandra,&nbsp;Martin Hairer,&nbsp;Martin Peev","doi":"10.1007/s00220-024-05147-8","DOIUrl":null,"url":null,"abstract":"<div><p>We prove local (in space and time) well-posedness for a mildly regularised version of the stochastic quantisation of the <span>\\(\\hbox {Yukawa}_{{2}}\\)</span> Euclidean field theory with a self-interacting boson. Our regularised dynamic is still singular but avoids non-local divergences, allowing us to use a version of the Da Prato–Debussche argument (Da Prato and Debussche in Ann Probab 31(4):1900–1916, 2003. https://doi.org/10.1214/aop/1068646370). This model is a test case for a non-commutative probability framework for formulating the kind of singular SPDEs arising in the stochastic quantisation of field theories mixing both bosons and fermions.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05147-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05147-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We prove local (in space and time) well-posedness for a mildly regularised version of the stochastic quantisation of the \(\hbox {Yukawa}_{{2}}\) Euclidean field theory with a self-interacting boson. Our regularised dynamic is still singular but avoids non-local divergences, allowing us to use a version of the Da Prato–Debussche argument (Da Prato and Debussche in Ann Probab 31(4):1900–1916, 2003. https://doi.org/10.1214/aop/1068646370). This model is a test case for a non-commutative probability framework for formulating the kind of singular SPDEs arising in the stochastic quantisation of field theories mixing both bosons and fermions.

一个动态Yukawa \(_{2}\)模型
我们证明了具有自相互作用玻色子的\(\hbox {Yukawa}_{{2}}\)欧几里得场论的随机量子化的温和正则版本的局部(在空间和时间上)适定性。我们的正则化动态仍然是奇异的,但避免了非局部发散,允许我们使用一个版本的Da Prato - Debussche论证(Da Prato and Debussche in Ann Probab 31(4): 1900-1916, 2003)。https://doi.org/10.1214/aop/1068646370)。该模型是一个非交换概率框架的测试案例,用于在混合玻色子和费米子的场论的随机量子化中形成奇异spde。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信