{"title":"4D-CS: Exploiting Cluster Prior for 4D Spatio-Temporal LiDAR Semantic Segmentation","authors":"Jiexi Zhong;Zhiheng Li;Yubo Cui;Zheng Fang","doi":"10.1109/LRA.2024.3511411","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of LiDAR points has significant value for autonomous driving and mobile robot systems. Most approaches explore spatio-temporal information of multi-scan to identify the semantic classes and motion states for each point. However, these methods often overlook the segmentation consistency in space and time, which may result in point clouds within the same object being predicted as different categories. To handle this issue, our core idea is to generate cluster labels across multiple frames that can reflect the complete spatial structure and temporal information of objects. These labels serve as explicit guidance for our dual-branch network, 4D-CS, which integrates point-based and cluster-based branches to enable more consistent segmentation. Specifically, in the point-based branch, we leverage historical knowledge to enrich the current feature through temporal fusion on multiple views. In the cluster-based branch, we propose a new strategy to produce cluster labels of foreground objects and apply them to gather point-wise information to derive cluster features. We then merge neighboring clusters across multiple scans to restore missing features due to occlusion. Finally, in the point-cluster fusion stage, we adaptively fuse the information from the two branches to optimize segmentation results. Extensive experiments confirm the effectiveness of the proposed method, and we achieve state-of-the-art results on the multi-scan semantic and moving object segmentation on SemanticKITTI and nuScenes datasets.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"468-475"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777056/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic segmentation of LiDAR points has significant value for autonomous driving and mobile robot systems. Most approaches explore spatio-temporal information of multi-scan to identify the semantic classes and motion states for each point. However, these methods often overlook the segmentation consistency in space and time, which may result in point clouds within the same object being predicted as different categories. To handle this issue, our core idea is to generate cluster labels across multiple frames that can reflect the complete spatial structure and temporal information of objects. These labels serve as explicit guidance for our dual-branch network, 4D-CS, which integrates point-based and cluster-based branches to enable more consistent segmentation. Specifically, in the point-based branch, we leverage historical knowledge to enrich the current feature through temporal fusion on multiple views. In the cluster-based branch, we propose a new strategy to produce cluster labels of foreground objects and apply them to gather point-wise information to derive cluster features. We then merge neighboring clusters across multiple scans to restore missing features due to occlusion. Finally, in the point-cluster fusion stage, we adaptively fuse the information from the two branches to optimize segmentation results. Extensive experiments confirm the effectiveness of the proposed method, and we achieve state-of-the-art results on the multi-scan semantic and moving object segmentation on SemanticKITTI and nuScenes datasets.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.