Enhancing Information Freshness and Energy Efficiency in D2D Networks Through DRL-Based Scheduling and Resource Management

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Parisa Parhizgar;Mehdi Mahdavi;Mohammad Reza Ahmadzadeh;Melike Erol-Kantarci
{"title":"Enhancing Information Freshness and Energy Efficiency in D2D Networks Through DRL-Based Scheduling and Resource Management","authors":"Parisa Parhizgar;Mehdi Mahdavi;Mohammad Reza Ahmadzadeh;Melike Erol-Kantarci","doi":"10.1109/OJVT.2024.3502803","DOIUrl":null,"url":null,"abstract":"This paper investigates resource management in device-to-device (D2D) networks coexisting with cellular user equipment (CUEs). We introduce a novel model for joint scheduling and resource management in D2D networks, taking into account environmental constraints. To preserve information freshness, measured by minimizing the average age of information (AoI), and to effectively utilize energy harvesting (EH) technology to satisfy the network's energy needs, we formulate an online optimization problem. This formulation considers factors such as the quality of service (QoS) for both CUEs and D2Ds, available power, information freshness, and environmental sensing requirements. Due to the mixed-integer nonlinear nature and online characteristics of the problem, we propose a deep reinforcement learning (DRL) approach to solve it effectively. Numerical results show that the proposed joint scheduling and resource management strategy, utilizing the soft actor-critic (SAC) algorithm, reduces the average AoI by 20% compared to other baseline methods.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"52-67"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758763","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758763/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates resource management in device-to-device (D2D) networks coexisting with cellular user equipment (CUEs). We introduce a novel model for joint scheduling and resource management in D2D networks, taking into account environmental constraints. To preserve information freshness, measured by minimizing the average age of information (AoI), and to effectively utilize energy harvesting (EH) technology to satisfy the network's energy needs, we formulate an online optimization problem. This formulation considers factors such as the quality of service (QoS) for both CUEs and D2Ds, available power, information freshness, and environmental sensing requirements. Due to the mixed-integer nonlinear nature and online characteristics of the problem, we propose a deep reinforcement learning (DRL) approach to solve it effectively. Numerical results show that the proposed joint scheduling and resource management strategy, utilizing the soft actor-critic (SAC) algorithm, reduces the average AoI by 20% compared to other baseline methods.
通过基于drl的调度和资源管理提高D2D网络的信息新鲜度和能源效率
本文研究了与蜂窝用户设备共存的设备对设备(D2D)网络中的资源管理问题。在考虑环境约束的情况下,提出了一种新的D2D网络联合调度和资源管理模型。为了通过最小化信息的平均年龄(AoI)来保持信息的新鲜度,并有效地利用能量收集(EH)技术来满足网络的能量需求,我们制定了一个在线优化问题。该公式考虑了诸如cue和d2d的服务质量(QoS)、可用功率、信息新鲜度和环境传感要求等因素。由于该问题的混合整数非线性特性和在线特性,我们提出了一种深度强化学习(DRL)方法来有效地解决该问题。数值结果表明,采用软行为者评价(SAC)算法的联合调度和资源管理策略与其他基准方法相比,平均AoI降低了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信