Physics-Informed Machine Learning for the Efficient Modeling of High-Frequency Devices

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanan Liu;Hongliang Li;Jian-Ming Jin
{"title":"Physics-Informed Machine Learning for the Efficient Modeling of High-Frequency Devices","authors":"Yanan Liu;Hongliang Li;Jian-Ming Jin","doi":"10.1109/JMMCT.2024.3502062","DOIUrl":null,"url":null,"abstract":"In this paper, we present a machine learning technique based on analytic extension of eigenvalues and neural networks for the efficient modeling of high-frequency devices. In the proposed method, neural networks are used to learn the mapping between device's geometry and its modal equivalent circuit parameters. These circuit parameters are extracted from the eigen-decomposition of the deviceâs \n<inline-formula><tex-math>$Z$</tex-math></inline-formula>\n-parameters at a few sample frequencies. The eigenvalues and eigenvectors of the \n<inline-formula><tex-math>$Z$</tex-math></inline-formula>\n-matrix are analytically extended to other frequencies based on functional equations constructed from the lumped equivalent circuit model, from which the full electromagnetic response can be recovered. In addition to fully-connected neural network layers, our proposed model introduces an analytical projection branch based on AEE principles to maximize the information gain from samples in the training dataset. To improve the robustness and efficiency of the learning process, we introduce an adaptive gradient update algorithm. The overall model is end-to-end differentiable and can be integrated into gradient-based optimization methods. Numerical examples are provided to demonstrate the capability of the proposed method. Compared with traditional neural network-based models, the proposed approach achieves higher accuracy using fewer data samples and generalizes better to out-of-domain inputs.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"28-37"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10757381/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a machine learning technique based on analytic extension of eigenvalues and neural networks for the efficient modeling of high-frequency devices. In the proposed method, neural networks are used to learn the mapping between device's geometry and its modal equivalent circuit parameters. These circuit parameters are extracted from the eigen-decomposition of the deviceâs $Z$ -parameters at a few sample frequencies. The eigenvalues and eigenvectors of the $Z$ -matrix are analytically extended to other frequencies based on functional equations constructed from the lumped equivalent circuit model, from which the full electromagnetic response can be recovered. In addition to fully-connected neural network layers, our proposed model introduces an analytical projection branch based on AEE principles to maximize the information gain from samples in the training dataset. To improve the robustness and efficiency of the learning process, we introduce an adaptive gradient update algorithm. The overall model is end-to-end differentiable and can be integrated into gradient-based optimization methods. Numerical examples are provided to demonstrate the capability of the proposed method. Compared with traditional neural network-based models, the proposed approach achieves higher accuracy using fewer data samples and generalizes better to out-of-domain inputs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信