Nicolas C. Kruse;Ronny G. Guendel;Francesco Fioranelli;Alexander Yarovoy
{"title":"Reconstruction of Extended Target Intensity Maps and Velocity Distribution for Human Activity Classification","authors":"Nicolas C. Kruse;Ronny G. Guendel;Francesco Fioranelli;Alexander Yarovoy","doi":"10.1109/TRS.2024.3509775","DOIUrl":null,"url":null,"abstract":"The problem of human activity classification using a distributed network of radar sensors has been considered. A novel sensor fusion method has been proposed that processes data from a network of radar sensors and yields 3-D representations of both reflection intensity and velocity distribution. The formulated method has been verified in an experimental case study, where activity classification was performed using data collected with 14 participants moving in diverse, unconstrained trajectories and executing nine activities. The classification performance of the proposed method has been compared to alternative fusion methods on the same dataset, and a test accuracy and macro \n<inline-formula> <tex-math>$F1$ </tex-math></inline-formula>\n-score of, respectively, 87.4% and 81.9% have been demonstrated. A feasibility study has also been performed to demonstrate the ability of the proposed method to generate 3-D distributions of intensity and target velocity.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"14-25"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772162/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of human activity classification using a distributed network of radar sensors has been considered. A novel sensor fusion method has been proposed that processes data from a network of radar sensors and yields 3-D representations of both reflection intensity and velocity distribution. The formulated method has been verified in an experimental case study, where activity classification was performed using data collected with 14 participants moving in diverse, unconstrained trajectories and executing nine activities. The classification performance of the proposed method has been compared to alternative fusion methods on the same dataset, and a test accuracy and macro
$F1$
-score of, respectively, 87.4% and 81.9% have been demonstrated. A feasibility study has also been performed to demonstrate the ability of the proposed method to generate 3-D distributions of intensity and target velocity.