A spatiotemporal autoregressive neural network interpolation method for discrete environmental factors

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jin Qi, Wenting Lv, Junxia Zhu, Minyu Wang, Zhe Zhang, Guangyuan Zhang, Sensen Wu, Zhenhong Du
{"title":"A spatiotemporal autoregressive neural network interpolation method for discrete environmental factors","authors":"Jin Qi, Wenting Lv, Junxia Zhu, Minyu Wang, Zhe Zhang, Guangyuan Zhang, Sensen Wu, Zhenhong Du","doi":"10.1016/j.envsoft.2024.106289","DOIUrl":null,"url":null,"abstract":"The spatiotemporal interpolation model is necessary for generating continuous distributions for spatiotemporally discrete sampling points. However, there remain challenges in spatiotemporal interpolation due to the complex spatiotemporal effect and the imprecise kernel functions. Here, we proposed a spatiotemporal autoregressive neural network interpolation model (STARNN) that incorporates adaptive spatiotemporal distance quantification and supervised learning. The 10-fold cross-validation modelling on sea surface temperature and coastal nutrients demonstrated that the STARNN model performs better than baseline models and can well depict reasonable spatiotemporal distributions for environmental factors. By proposing two stacked neural networks, the STARNN model can accurately integrate spatial and temporal distances and avoids subjective selection of the kernel function. This study developed a novel interpolation model for processing discrete spatiotemporal points by following the data-driven paradigm, which can offer decision support for simulating the spread of sea temperature anomalies and optimizing the distribution of water quality measurement stations.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"41 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2024.106289","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The spatiotemporal interpolation model is necessary for generating continuous distributions for spatiotemporally discrete sampling points. However, there remain challenges in spatiotemporal interpolation due to the complex spatiotemporal effect and the imprecise kernel functions. Here, we proposed a spatiotemporal autoregressive neural network interpolation model (STARNN) that incorporates adaptive spatiotemporal distance quantification and supervised learning. The 10-fold cross-validation modelling on sea surface temperature and coastal nutrients demonstrated that the STARNN model performs better than baseline models and can well depict reasonable spatiotemporal distributions for environmental factors. By proposing two stacked neural networks, the STARNN model can accurately integrate spatial and temporal distances and avoids subjective selection of the kernel function. This study developed a novel interpolation model for processing discrete spatiotemporal points by following the data-driven paradigm, which can offer decision support for simulating the spread of sea temperature anomalies and optimizing the distribution of water quality measurement stations.
离散环境因素的时空自回归神经网络插值法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信