A novel operational water quality mobile prediction system with LSTM-Seq2Seq model

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lizi Xie, Yanxin Zhao, Pan Fang, Meiling Cheng, Zhuo Chen, Yonggui Wang
{"title":"A novel operational water quality mobile prediction system with LSTM-Seq2Seq model","authors":"Lizi Xie, Yanxin Zhao, Pan Fang, Meiling Cheng, Zhuo Chen, Yonggui Wang","doi":"10.1016/j.envsoft.2024.106290","DOIUrl":null,"url":null,"abstract":"An adequate water quality prediction mobile system is crucial for real-time, proactive, and convenient water environment monitoring through mobile devices to reduce or prevent water environmental threats. After exploring the feasibility and superiority of the LSTM-seq2seq model for predicting various water quality indicators, the optimal time step range for different length predictions was proposed. To verify the generalizability and reusability of the model, the performance differences of migrating models was investigated. Based on the entire process, we have developed a cost-effective, widely applicable, and sustainable operational prediction system framework. It was successfully applied in the Huangshui River Basin for two years. Results indicated that the model can achieve an <ce:italic>NSE</ce:italic> of above 0.5 for indicators with high coefficient of variation and above 0.75 for more stable indicators. When carrying out transfer applications, the model can achieve an <ce:italic>NSE</ce:italic> performance of above 0.5 for most sites in short to medium-term forecasting.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"23 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2024.106290","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

An adequate water quality prediction mobile system is crucial for real-time, proactive, and convenient water environment monitoring through mobile devices to reduce or prevent water environmental threats. After exploring the feasibility and superiority of the LSTM-seq2seq model for predicting various water quality indicators, the optimal time step range for different length predictions was proposed. To verify the generalizability and reusability of the model, the performance differences of migrating models was investigated. Based on the entire process, we have developed a cost-effective, widely applicable, and sustainable operational prediction system framework. It was successfully applied in the Huangshui River Basin for two years. Results indicated that the model can achieve an NSE of above 0.5 for indicators with high coefficient of variation and above 0.75 for more stable indicators. When carrying out transfer applications, the model can achieve an NSE performance of above 0.5 for most sites in short to medium-term forecasting.
采用 LSTM-Seq2Seq 模型的新型运行水质移动预测系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信