Photosynthetic Energy Transfer: Missing in Action (Detected Spectroscopy)?

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ariba Javed, Julian Lüttig, Kateřina Charvátová, Stephanie E. Sanders, Rhiannon Willow, Muyi Zhang, Alastair T. Gardiner, Pavel Malý, Jennifer P. Ogilvie
{"title":"Photosynthetic Energy Transfer: Missing in Action (Detected Spectroscopy)?","authors":"Ariba Javed, Julian Lüttig, Kateřina Charvátová, Stephanie E. Sanders, Rhiannon Willow, Muyi Zhang, Alastair T. Gardiner, Pavel Malý, Jennifer P. Ogilvie","doi":"10.1021/acs.jpclett.4c02665","DOIUrl":null,"url":null,"abstract":"In recent years, action-detected ultrafast spectroscopies have gained popularity offering distinct advantages over their coherently detected counterparts, such as spatially resolved and operando measurements with high sensitivity. However, there are also fundamental limitations connected to the process of signal generation in action-detected experiments. Here we perform fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) of the light-harvesting II (LH2) complex from purple bacteria. We demonstrate that the B800–B850 energy transfer process in LH2 is weak but observable in F-2DES, unlike in coherently detected 2DES where the energy transfer is visible with 100% contrast. We explain the weak signatures using a disordered excitonic model that accounts for experimental conditions. We further derive a general formula for the presence of excited-state signals in multichromophoric aggregates, dependent on the aggregate geometry, size, excitonic coupling and disorder. We find that the prominence of excited-state dynamics in action-detected spectroscopy offers a unique probe of excitonic delocalization in multichromophoric systems.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"19 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02665","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, action-detected ultrafast spectroscopies have gained popularity offering distinct advantages over their coherently detected counterparts, such as spatially resolved and operando measurements with high sensitivity. However, there are also fundamental limitations connected to the process of signal generation in action-detected experiments. Here we perform fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) of the light-harvesting II (LH2) complex from purple bacteria. We demonstrate that the B800–B850 energy transfer process in LH2 is weak but observable in F-2DES, unlike in coherently detected 2DES where the energy transfer is visible with 100% contrast. We explain the weak signatures using a disordered excitonic model that accounts for experimental conditions. We further derive a general formula for the presence of excited-state signals in multichromophoric aggregates, dependent on the aggregate geometry, size, excitonic coupling and disorder. We find that the prominence of excited-state dynamics in action-detected spectroscopy offers a unique probe of excitonic delocalization in multichromophoric systems.

Abstract Image

光合作用能量转移:行动中的缺失(检测光谱学)?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信