Magda Argueta-Guzmán, Quinn S. McFrederick, Marko J. Spasojevic
{"title":"Multitrophic assembly influences β-diversity across a tripartite system of flowering plants, bees, and bee-gut microbiomes","authors":"Magda Argueta-Guzmán, Quinn S. McFrederick, Marko J. Spasojevic","doi":"10.1111/ecog.07490","DOIUrl":null,"url":null,"abstract":"Theoretical frameworks of terrestrial community assembly often focus on single trophic levels (e.g. plants) without considering how complex interdependencies across different trophic levels influence assembly mechanisms. Yet, when multiple trophic levels are considered (e.g. plant–pollinator, plant–microbe interactions) the focus is typically on network analyses at local spatial scales. As spatial variation in biodiversity (β-diversity) is increasingly being recognized for its relevance in understanding community assembly and conservation, considering how β-diversity at one trophic level may be influenced by assembly processes that alter abundance and composition of interacting communities at a different trophic level (multitrophic dependency) is critical. Here, we build on single trophic level community assembly frameworks to explore the assembly processes affecting β-diversity in multitrophic communities comprising flowering plants, their bee pollinators, and the corresponding bee-gut microbiota to better understand the importance of multitrophic dependency in community assembly. Using distance-based redundancy analysis and variation partitioning, we investigated community assembly processes across three interconnected trophic levels in two ecological regions in southern California: the Santa Monica Mountains and three islands of the Channel Island Archipelago. We found that the deterministic effects of multitrophic dependency are stronger on directly connected trophic levels than on indirectly connected trophic levels (i.e. flowers explain bee communities and bees explain bee-gut bacteria communities, but flowers weakly explain variation in bee-gut bacteria communities). We also found notable regional variation, where multitrophic dependency was weaker on the Channel Islands as ecological drift was more pronounced. Our results suggest that integrating the influence of multitrophic dependency on community assembly is important for elucidating drivers of β-diversity and that multitrophic dependency can be determined by the regional context in which β-diversity is measured. Taken together, our results highlight the importance of considering multiscale perspectives – both multitrophic and multiregional – in community assembly to fully elucidate assembly processes.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"41 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07490","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Theoretical frameworks of terrestrial community assembly often focus on single trophic levels (e.g. plants) without considering how complex interdependencies across different trophic levels influence assembly mechanisms. Yet, when multiple trophic levels are considered (e.g. plant–pollinator, plant–microbe interactions) the focus is typically on network analyses at local spatial scales. As spatial variation in biodiversity (β-diversity) is increasingly being recognized for its relevance in understanding community assembly and conservation, considering how β-diversity at one trophic level may be influenced by assembly processes that alter abundance and composition of interacting communities at a different trophic level (multitrophic dependency) is critical. Here, we build on single trophic level community assembly frameworks to explore the assembly processes affecting β-diversity in multitrophic communities comprising flowering plants, their bee pollinators, and the corresponding bee-gut microbiota to better understand the importance of multitrophic dependency in community assembly. Using distance-based redundancy analysis and variation partitioning, we investigated community assembly processes across three interconnected trophic levels in two ecological regions in southern California: the Santa Monica Mountains and three islands of the Channel Island Archipelago. We found that the deterministic effects of multitrophic dependency are stronger on directly connected trophic levels than on indirectly connected trophic levels (i.e. flowers explain bee communities and bees explain bee-gut bacteria communities, but flowers weakly explain variation in bee-gut bacteria communities). We also found notable regional variation, where multitrophic dependency was weaker on the Channel Islands as ecological drift was more pronounced. Our results suggest that integrating the influence of multitrophic dependency on community assembly is important for elucidating drivers of β-diversity and that multitrophic dependency can be determined by the regional context in which β-diversity is measured. Taken together, our results highlight the importance of considering multiscale perspectives – both multitrophic and multiregional – in community assembly to fully elucidate assembly processes.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.