Topological Superconductivity in Heavily Doped Single-Layer Graphene

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-09 DOI:10.1021/acsnano.4c12532
Saúl A. Herrera, Guillermo Parra-Martínez, Philipp Rosenzweig, Bharti Matta, Craig M. Polley, Kathrin Küster, Ulrich Starke, Francisco Guinea, José Ángel Silva-Guillén, Gerardo G. Naumis, Pierre A. Pantaleón
{"title":"Topological Superconductivity in Heavily Doped Single-Layer Graphene","authors":"Saúl A. Herrera, Guillermo Parra-Martínez, Philipp Rosenzweig, Bharti Matta, Craig M. Polley, Kathrin Küster, Ulrich Starke, Francisco Guinea, José Ángel Silva-Guillén, Gerardo G. Naumis, Pierre A. Pantaleón","doi":"10.1021/acsnano.4c12532","DOIUrl":null,"url":null,"abstract":"The existence of superconductivity (SC) appears to be established in both twisted and nontwisted graphene multilayers. However, whether their building block, single-layer graphene (SLG), can also host SC remains an open question. Earlier theoretical works predicted that SLG could become a chiral <i>d</i>-wave superconductor driven by electronic interactions when doped to its van Hove singularity, but questions such as whether the <i>d</i>-wave SC survives the strong band renormalizations seen in experiments, its robustness against the source of doping, or if it will occur at any reasonable critical temperature (<i>T</i><sub>c</sub>) have remained difficult to answer, in part due to uncertainties in model parameters. Furthermore, doping of graphene beyond its van Hove singularity remained experimentally challenging and was not demonstrated until recently. In this study, we <i>n</i> dope SLG past the van Hove singularity by employing Tb intercalation and derive structural models from angle-resolved photoemission spectroscopy measurements. We adopt a reliable numerical framework based on a random-phase approximation technique to investigate the emergence of unconventional SC in the heavily doped monolayer. We predict that robust <i>d</i> + <i>id</i> topological SC could arise in SLG doped by Tb, with a <i>T</i><sub>c</sub> up to 600 mK. We also employ first-principles calculations to investigate the possibility of realizing <i>d</i>-wave SC with other dopants, such as Li or Cs. We find that dopants that change the lattice symmetry of SLG are detrimental to the <i>d</i>-wave state. The stability of the <i>d</i>-wave SC predicted here in Tb-doped SLG could provide a valuable insight for guiding future experimental efforts aimed at exploring topological superconductivity in monolayer graphene.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"20 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12532","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of superconductivity (SC) appears to be established in both twisted and nontwisted graphene multilayers. However, whether their building block, single-layer graphene (SLG), can also host SC remains an open question. Earlier theoretical works predicted that SLG could become a chiral d-wave superconductor driven by electronic interactions when doped to its van Hove singularity, but questions such as whether the d-wave SC survives the strong band renormalizations seen in experiments, its robustness against the source of doping, or if it will occur at any reasonable critical temperature (Tc) have remained difficult to answer, in part due to uncertainties in model parameters. Furthermore, doping of graphene beyond its van Hove singularity remained experimentally challenging and was not demonstrated until recently. In this study, we n dope SLG past the van Hove singularity by employing Tb intercalation and derive structural models from angle-resolved photoemission spectroscopy measurements. We adopt a reliable numerical framework based on a random-phase approximation technique to investigate the emergence of unconventional SC in the heavily doped monolayer. We predict that robust d + id topological SC could arise in SLG doped by Tb, with a Tc up to 600 mK. We also employ first-principles calculations to investigate the possibility of realizing d-wave SC with other dopants, such as Li or Cs. We find that dopants that change the lattice symmetry of SLG are detrimental to the d-wave state. The stability of the d-wave SC predicted here in Tb-doped SLG could provide a valuable insight for guiding future experimental efforts aimed at exploring topological superconductivity in monolayer graphene.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信