Wei-Wen Yu, Joy N.P. Barrett, Jie Tong, Meng-Ju Lin, Meaghan Marohn, Joseph C. Devlin, Alberto Herrera, Juliana Remark, Jamie Levine, Pei-Kang Liu, Victoria Fang, Abigail M. Zellmer, Derek A. Oldridge, E. John Wherry, Jia-Ren Lin, Jia-Yun Chen, Peter Sorger, Sandro Santagata, James G. Krueger, Kelly V. Ruggles, Catherine P. Lu
{"title":"Skin immune-mesenchymal interplay within tertiarylymphoid structures promotes autoimmunepathogenesis in hidradenitis suppurativa","authors":"Wei-Wen Yu, Joy N.P. Barrett, Jie Tong, Meng-Ju Lin, Meaghan Marohn, Joseph C. Devlin, Alberto Herrera, Juliana Remark, Jamie Levine, Pei-Kang Liu, Victoria Fang, Abigail M. Zellmer, Derek A. Oldridge, E. John Wherry, Jia-Ren Lin, Jia-Yun Chen, Peter Sorger, Sandro Santagata, James G. Krueger, Kelly V. Ruggles, Catherine P. Lu","doi":"10.1016/j.immuni.2024.11.010","DOIUrl":null,"url":null,"abstract":"Hidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disease characterized by keratinized epithelial tunnels that grow deeply into the dermis. Here, we examined the immune microenvironment within human HS lesions. Multi-omics profiling and multiplexed imaging identified tertiary lymphoid structures (TLSs) near HS tunnels. These TLSs were enriched with proliferative T cells, including follicular helper (Tfh), regulatory (Treg), and pathogenic T cells (<em>IL17A</em>+ and <em>IFNG</em>+), alongside extensive clonal expansion of plasma cells producing antibodies reactive to keratinocytes. HS fibroblasts express <em>CXCL13</em> or <em>CCL19</em> in response to immune cytokines. Using a microfluidic system to mimic TLS on a chip, we found that HS fibroblasts critically orchestrated lymphocyte aggregation via tumor necrosis factor alpha (TNF-α)-CXCL13 and TNF-α-CCL19 feedback loops with B and T cells, respectively; early TNF-α blockade suppressed aggregate initiation. Our findings provide insights into TLS formation in the skin, suggest therapeutic avenues for HS, and reveal mechanisms that may apply to other autoimmune settings, including Crohn’s disease.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"37 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.11.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disease characterized by keratinized epithelial tunnels that grow deeply into the dermis. Here, we examined the immune microenvironment within human HS lesions. Multi-omics profiling and multiplexed imaging identified tertiary lymphoid structures (TLSs) near HS tunnels. These TLSs were enriched with proliferative T cells, including follicular helper (Tfh), regulatory (Treg), and pathogenic T cells (IL17A+ and IFNG+), alongside extensive clonal expansion of plasma cells producing antibodies reactive to keratinocytes. HS fibroblasts express CXCL13 or CCL19 in response to immune cytokines. Using a microfluidic system to mimic TLS on a chip, we found that HS fibroblasts critically orchestrated lymphocyte aggregation via tumor necrosis factor alpha (TNF-α)-CXCL13 and TNF-α-CCL19 feedback loops with B and T cells, respectively; early TNF-α blockade suppressed aggregate initiation. Our findings provide insights into TLS formation in the skin, suggest therapeutic avenues for HS, and reveal mechanisms that may apply to other autoimmune settings, including Crohn’s disease.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.