Increasing the dual-enzyme cascade biocatalysis efficiency and stability of metal–organic frameworks via one-step coimmobilization for visual detection of glucose

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-12-10 DOI:10.1039/d4nr04156a
Haotian Chen, Zelong Yan, Jiangyue Ning, Xingyan Bao, Li Ding, Chang Shu
{"title":"Increasing the dual-enzyme cascade biocatalysis efficiency and stability of metal–organic frameworks via one-step coimmobilization for visual detection of glucose","authors":"Haotian Chen, Zelong Yan, Jiangyue Ning, Xingyan Bao, Li Ding, Chang Shu","doi":"10.1039/d4nr04156a","DOIUrl":null,"url":null,"abstract":"In biosensing analysis, the activity of enzyme systems is limited by their fragility, and substrates catalyzed by monoenzymes tend to undergo spontaneous decomposition during ineffective mass transfer processes. In this study, we propose a novel strategy to encapsulate the glucose oxidase and horseradish peroxidase (GOx&amp;HRP) cascade catalytic system within the hydrophilic zeolite imidazole framework ZIF-90. By leveraging the specific pore structure of ZIF-90, we effectively immobilized GOx and HRP molecules in their three-dimensional conformations, which improved the catalytic activity of the encapsulated enzymes compared with that of free GOx and HRP in various harsh environments. Additionally, our strategy reduced the occurrence of ineffective mass transfer and enhanced the sensitivity of the biosensor through an enzyme cascade system. When this biosensor was applied to serum samples containing complex biological matrices, the degradation of GOx&amp;HRP by various proteases and the surface adsorption of diverse biomolecules were effectively prevented, thereby generating stable and reliable signals of glucose levels. The sensor shows remarkable sensitivity and selectivity for determining glucose concentrations ranging from 0 to 2.5 μg ml<small><sup>−1</sup></small>, with a detection limit as low as 0.034 μg ml<small><sup>−1</sup></small>. Furthermore, we developed a paper-based colorimetric sensor utilizing GOx&amp;HRP@ZIF-90 integrated with a smartphone platform for the visual detection of blood glucose.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"28 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04156a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In biosensing analysis, the activity of enzyme systems is limited by their fragility, and substrates catalyzed by monoenzymes tend to undergo spontaneous decomposition during ineffective mass transfer processes. In this study, we propose a novel strategy to encapsulate the glucose oxidase and horseradish peroxidase (GOx&HRP) cascade catalytic system within the hydrophilic zeolite imidazole framework ZIF-90. By leveraging the specific pore structure of ZIF-90, we effectively immobilized GOx and HRP molecules in their three-dimensional conformations, which improved the catalytic activity of the encapsulated enzymes compared with that of free GOx and HRP in various harsh environments. Additionally, our strategy reduced the occurrence of ineffective mass transfer and enhanced the sensitivity of the biosensor through an enzyme cascade system. When this biosensor was applied to serum samples containing complex biological matrices, the degradation of GOx&HRP by various proteases and the surface adsorption of diverse biomolecules were effectively prevented, thereby generating stable and reliable signals of glucose levels. The sensor shows remarkable sensitivity and selectivity for determining glucose concentrations ranging from 0 to 2.5 μg ml−1, with a detection limit as low as 0.034 μg ml−1. Furthermore, we developed a paper-based colorimetric sensor utilizing GOx&HRP@ZIF-90 integrated with a smartphone platform for the visual detection of blood glucose.

Abstract Image

通过一步共固定化提高双酶级联生物催化效率和金属有机框架的稳定性,从而实现葡萄糖的可视化检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
文献相关原料
公司名称 产品信息 采购帮参考价格
阿拉丁 horseradish peroxidase (HRP)
阿拉丁 glucose oxidase (GOx)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信