{"title":"Comprehensive Insights into Aqueous Potassium-Ion Batteries","authors":"Maoting Xia, Jiang Zhou, Bingan Lu","doi":"10.1002/aenm.202404032","DOIUrl":null,"url":null,"abstract":"Aqueous potassium-ion batteries (AKIBs) with mild aqueous electrolytes can significantly mitigate the safety and environmental issues raised from traditional nonaqueous batteries, positioning them as promising candidates for grid-scale applications. Nonetheless, the progression of AKIBs is currently impeded by the insufficient energy density, largely attributed to the limited voltage window of aqueous electrolytes. This review aims to introduce foundational knowledge about aqueous batteries, illustrates recent advancements in AKIBs, and offers valuable perspectives on designing electrode materials and optimizing electrolytes. To provide a systematic overview, the focus is on the following seven key sections: i) development history, ii) electrode materials, iii) electrolyte design, iv) current collectors, v) aqueous interphase chemistry, vi) full cell configurations, and vii) future prospects. Finally, constructive insights and suggestions are provided for the development of AKIBs with higher energy density.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"28 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404032","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous potassium-ion batteries (AKIBs) with mild aqueous electrolytes can significantly mitigate the safety and environmental issues raised from traditional nonaqueous batteries, positioning them as promising candidates for grid-scale applications. Nonetheless, the progression of AKIBs is currently impeded by the insufficient energy density, largely attributed to the limited voltage window of aqueous electrolytes. This review aims to introduce foundational knowledge about aqueous batteries, illustrates recent advancements in AKIBs, and offers valuable perspectives on designing electrode materials and optimizing electrolytes. To provide a systematic overview, the focus is on the following seven key sections: i) development history, ii) electrode materials, iii) electrolyte design, iv) current collectors, v) aqueous interphase chemistry, vi) full cell configurations, and vii) future prospects. Finally, constructive insights and suggestions are provided for the development of AKIBs with higher energy density.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.