Manipulating Crystallization Kinetics and Vertical Phase Distribution via Small Molecule Donor Guest for Organic Photovoltaic Cells with 20% Efficiency

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Cheng, Wenwen Hou, Chenyu Han, Sixuan Cheng, Xinxin Xia, Xia Guo, Yongfang Li, Maojie Zhang
{"title":"Manipulating Crystallization Kinetics and Vertical Phase Distribution via Small Molecule Donor Guest for Organic Photovoltaic Cells with 20% Efficiency","authors":"Bo Cheng, Wenwen Hou, Chenyu Han, Sixuan Cheng, Xinxin Xia, Xia Guo, Yongfang Li, Maojie Zhang","doi":"10.1039/d4ee04623d","DOIUrl":null,"url":null,"abstract":"Precise control over molecular crystallization and vertical phase distribution of photovoltaic bulk-heterojunction (BHJ) films is crucial for enhancing their optoelectronic properties toward high-performing polymer solar cells (PSCs). Herein, a kinetics-controlling strategy is implemented in the PM6:L8-BO blend system by introducing a small molecule donor (SMD), namely BTR-SCl, which possesses strong crystallization property and excellent miscibility with the host polymer donor. The in-situ spectroscopy characterizations indicate that BTR-SCl can effectively advance the aggregation of PM6 from the blend solution and prolong its self-assembly time during the film formation process, which leads to well-defined vertical phase distribution with more ordered polymer donor enriched at the anode, effectively facilitating charge transport and collection, alleviating trap density and energetic disorder, and reducing energy loss. Ultimately, the PM6:BTR-SCl:L8-BO ternary PSCs (T-PSCs) achieve a remarkably enhanced power conversion efficiency (PCE) of 19.4% in comparison with 18.0% for the binary device. Notably, by replacing PM6 with D18, the PCE of ternary devices is further boosted to 20.0%, which represents the highest efficiency for SMD-based T-PSCs reported to date. Our findings elucidate the great potential of crystalline SMD in optimizing the vertical phase distribution and molecular packing within BHJ film, leading to considerable improvements in the PCE of PSCs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"9 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04623d","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise control over molecular crystallization and vertical phase distribution of photovoltaic bulk-heterojunction (BHJ) films is crucial for enhancing their optoelectronic properties toward high-performing polymer solar cells (PSCs). Herein, a kinetics-controlling strategy is implemented in the PM6:L8-BO blend system by introducing a small molecule donor (SMD), namely BTR-SCl, which possesses strong crystallization property and excellent miscibility with the host polymer donor. The in-situ spectroscopy characterizations indicate that BTR-SCl can effectively advance the aggregation of PM6 from the blend solution and prolong its self-assembly time during the film formation process, which leads to well-defined vertical phase distribution with more ordered polymer donor enriched at the anode, effectively facilitating charge transport and collection, alleviating trap density and energetic disorder, and reducing energy loss. Ultimately, the PM6:BTR-SCl:L8-BO ternary PSCs (T-PSCs) achieve a remarkably enhanced power conversion efficiency (PCE) of 19.4% in comparison with 18.0% for the binary device. Notably, by replacing PM6 with D18, the PCE of ternary devices is further boosted to 20.0%, which represents the highest efficiency for SMD-based T-PSCs reported to date. Our findings elucidate the great potential of crystalline SMD in optimizing the vertical phase distribution and molecular packing within BHJ film, leading to considerable improvements in the PCE of PSCs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信