Pesticide use in integrated pest and pollinator management framework to protect pollinator health

IF 3.8 1区 农林科学 Q1 AGRONOMY
Ngoc T Phan, David J Biddinger, Edwin G Rajotte, Guy Smagghe, Gadi VP Reddy, Zong‐Xin Ren, Neelendra K Joshi
{"title":"Pesticide use in integrated pest and pollinator management framework to protect pollinator health","authors":"Ngoc T Phan, David J Biddinger, Edwin G Rajotte, Guy Smagghe, Gadi VP Reddy, Zong‐Xin Ren, Neelendra K Joshi","doi":"10.1002/ps.8582","DOIUrl":null,"url":null,"abstract":"Agricultural pesticides have historically been a critical tool in controlling pests and diseases, preventing widespread suffering and crop losses that led to catastrophes such as the Great Irish Famine (1845–1852) and the Cotton Boll Weevil Infestation (1915–1916). However, their usage has brought challenges, including resistance development, secondary pest outbreaks, harm to non‐target organisms like pollinators, and environmental contamination. In response to these concerns, integrated pest management (IPM) has emerged as a comprehensive approach, emphasizing non‐chemical pest control methods such as cultural practices, biological control, and crop rotation, with pesticides as the last resort. IPM has evolved, influenced by regulations like the Food Quality Protection Act (FQPA), which prioritizes human health protection, especially for children. The development of systemic pesticides, particularly neonicotinoids, introduced a more efficient and targeted pest control method within the IPM framework. However, they have also raised concerns due to their potential adverse effects on pollinators. In recent years, integrated pest and pollinator management (IPPM) has emerged as an enhanced approach, integrating pollinator health considerations into pest management strategies. In this article, we discuss this new approach, and briefly present an example of a modifying pesticide program in Pennsylvania apple orchards to illustrate the application of IPPM, in order to highlight the importance of IPPM in sustaining agriculture, protecting vital pollinators, and maintaining effective pest control practices. © 2024 The Author(s). <jats:italic>Pest Management Science</jats:italic> published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":"48 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pest Management Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ps.8582","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Agricultural pesticides have historically been a critical tool in controlling pests and diseases, preventing widespread suffering and crop losses that led to catastrophes such as the Great Irish Famine (1845–1852) and the Cotton Boll Weevil Infestation (1915–1916). However, their usage has brought challenges, including resistance development, secondary pest outbreaks, harm to non‐target organisms like pollinators, and environmental contamination. In response to these concerns, integrated pest management (IPM) has emerged as a comprehensive approach, emphasizing non‐chemical pest control methods such as cultural practices, biological control, and crop rotation, with pesticides as the last resort. IPM has evolved, influenced by regulations like the Food Quality Protection Act (FQPA), which prioritizes human health protection, especially for children. The development of systemic pesticides, particularly neonicotinoids, introduced a more efficient and targeted pest control method within the IPM framework. However, they have also raised concerns due to their potential adverse effects on pollinators. In recent years, integrated pest and pollinator management (IPPM) has emerged as an enhanced approach, integrating pollinator health considerations into pest management strategies. In this article, we discuss this new approach, and briefly present an example of a modifying pesticide program in Pennsylvania apple orchards to illustrate the application of IPPM, in order to highlight the importance of IPPM in sustaining agriculture, protecting vital pollinators, and maintaining effective pest control practices. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pest Management Science
Pest Management Science 农林科学-昆虫学
CiteScore
7.90
自引率
9.80%
发文量
553
审稿时长
4.8 months
期刊介绍: Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management. Published for SCI by John Wiley & Sons Ltd.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信