The Benefits of Hierarchical Ecosystem Models: Demonstration Using EcoState, a New State‐Space Mass‐Balance Model

IF 5.6 1区 农林科学 Q1 FISHERIES
James T. Thorson, Kasper Kristensen, Kerim Y. Aydin, Sarah K. Gaichas, David G. Kimmel, Elizabeth A. McHuron, Jens M. Nielsen, Howard Townsend, George A. Whitehouse
{"title":"The Benefits of Hierarchical Ecosystem Models: Demonstration Using EcoState, a New State‐Space Mass‐Balance Model","authors":"James T. Thorson, Kasper Kristensen, Kerim Y. Aydin, Sarah K. Gaichas, David G. Kimmel, Elizabeth A. McHuron, Jens M. Nielsen, Howard Townsend, George A. Whitehouse","doi":"10.1111/faf.12874","DOIUrl":null,"url":null,"abstract":"Ecosystem models predict changes in productivity and status for multiple species, and are important for incorporating climate‐linked dynamics in ecosystem‐based fisheries management. However, fishery regulations are primarily informed by single‐species stock assessment models, which estimate unexplained variation in dynamics (e.g., recruitment, survival, fishery selectivity, etc) using random effects. We review the general benefits of estimating random effects in ecosystem models: (1) better representing biomass cycles and trends for focal species; (2) conditioning interactions upon observed biomass for predators and prey; (3) easier replication of model results using formal estimation rather than informal model “tuning;” and (4) attributing process errors via comparison amongst different models. We then demonstrate these by introducing a new state‐space model EcoState (and associated R‐package) that extends mass balance dynamics from Ecopath with Ecosim. This model estimates mass balance (Ecopath) and time‐dynamics (Ecosim) parameters directly via their fit to time‐series data (biomass indices and fisheries catches) while also estimating the magnitude of process errors using RTMB. A real‐world application involving Alaska pollock (<jats:styled-content style=\"fixed-case\"><jats:italic>Gadus chalcogrammus</jats:italic></jats:styled-content>) in the eastern Bering Sea suggests that fluctuations in krill consumption are associated with cycles of increased and decreased pollock production. A self‐test simulation experiment confirms that estimating process errors can improve estimates of productivity (growth and mortality) rates. Overall, we show that state‐space mass‐balance models can be fitted to time‐series data (similar to surplus‐production stock assessment models), and can attribute time‐varying productivity to both bottom‐up and top‐down drivers including the contribution of individual predator and prey interactions.","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"20 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/faf.12874","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Ecosystem models predict changes in productivity and status for multiple species, and are important for incorporating climate‐linked dynamics in ecosystem‐based fisheries management. However, fishery regulations are primarily informed by single‐species stock assessment models, which estimate unexplained variation in dynamics (e.g., recruitment, survival, fishery selectivity, etc) using random effects. We review the general benefits of estimating random effects in ecosystem models: (1) better representing biomass cycles and trends for focal species; (2) conditioning interactions upon observed biomass for predators and prey; (3) easier replication of model results using formal estimation rather than informal model “tuning;” and (4) attributing process errors via comparison amongst different models. We then demonstrate these by introducing a new state‐space model EcoState (and associated R‐package) that extends mass balance dynamics from Ecopath with Ecosim. This model estimates mass balance (Ecopath) and time‐dynamics (Ecosim) parameters directly via their fit to time‐series data (biomass indices and fisheries catches) while also estimating the magnitude of process errors using RTMB. A real‐world application involving Alaska pollock (Gadus chalcogrammus) in the eastern Bering Sea suggests that fluctuations in krill consumption are associated with cycles of increased and decreased pollock production. A self‐test simulation experiment confirms that estimating process errors can improve estimates of productivity (growth and mortality) rates. Overall, we show that state‐space mass‐balance models can be fitted to time‐series data (similar to surplus‐production stock assessment models), and can attribute time‐varying productivity to both bottom‐up and top‐down drivers including the contribution of individual predator and prey interactions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish and Fisheries
Fish and Fisheries 农林科学-渔业
CiteScore
12.80
自引率
6.00%
发文量
83
期刊介绍: Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信