Effects of energetic compounds on soil microbial communities and functional genes at a typical ammunition demolition site.

Yongbing Zhu, Sanping Zhao, Shuo Qi, Huijun Zhang, Xinru Zhang, Shangyi Li, Xiaohui Wang, Jing Gu, Tingting Zhang, Hailing Xi, Xiaodong Liu
{"title":"Effects of energetic compounds on soil microbial communities and functional genes at a typical ammunition demolition site.","authors":"Yongbing Zhu, Sanping Zhao, Shuo Qi, Huijun Zhang, Xinru Zhang, Shangyi Li, Xiaohui Wang, Jing Gu, Tingting Zhang, Hailing Xi, Xiaodong Liu","doi":"10.1016/j.chemosphere.2024.143913","DOIUrl":null,"url":null,"abstract":"<p><p>High concentrations of energetic compounds such as 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in military-contaminated sites pose a serious threat to human health and ecosystems. Better understanding about their effects on microbial diversity and functional genes in soil of ammunition demolition sites is required. In this study, the information of soil microbial community composition was obtained by metagenomic sequencing, and the impacts of energetic compounds on microbial community structure at the level of functional genes and enzymes based on Nr (Non-Redundant Protein Sequence Database), KEGG (Kyoto Encyclopedia of Genes and Genomes), CAZy (Carbohydrate-Active enZymes Database) and other databases were discussed. The results showed that soil microbial diversity and functional gene abundance decreased significantly with the increase of the concentrations of energetic compounds. Conversely, the relative abundance of Proteobacteria increased significantly, reaching over 80% in the heavily TNT-contaminated area near explosive-wastewater pool. Furthermore, functional gene analysis indicated that Proteobacteria had an advantage in degrading energetic compounds, and thus had the potential to improve the soil quality at ammunition demolition sites. This study provides a scientific basis for the future remediation and management of contaminated soils at ammunition demolition sites, as well as for the selection of efficient degraders of energetic compounds.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143913"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High concentrations of energetic compounds such as 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in military-contaminated sites pose a serious threat to human health and ecosystems. Better understanding about their effects on microbial diversity and functional genes in soil of ammunition demolition sites is required. In this study, the information of soil microbial community composition was obtained by metagenomic sequencing, and the impacts of energetic compounds on microbial community structure at the level of functional genes and enzymes based on Nr (Non-Redundant Protein Sequence Database), KEGG (Kyoto Encyclopedia of Genes and Genomes), CAZy (Carbohydrate-Active enZymes Database) and other databases were discussed. The results showed that soil microbial diversity and functional gene abundance decreased significantly with the increase of the concentrations of energetic compounds. Conversely, the relative abundance of Proteobacteria increased significantly, reaching over 80% in the heavily TNT-contaminated area near explosive-wastewater pool. Furthermore, functional gene analysis indicated that Proteobacteria had an advantage in degrading energetic compounds, and thus had the potential to improve the soil quality at ammunition demolition sites. This study provides a scientific basis for the future remediation and management of contaminated soils at ammunition demolition sites, as well as for the selection of efficient degraders of energetic compounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信