Squaric acid derivatives with cytotoxic activity-a review.

Georgi Tirolski, Georgi Momekov, Emiliya Cherneva
{"title":"Squaric acid derivatives with cytotoxic activity-a review.","authors":"Georgi Tirolski, Georgi Momekov, Emiliya Cherneva","doi":"10.1016/j.cbi.2024.111344","DOIUrl":null,"url":null,"abstract":"<p><p>3,4-Dihydroxycyclobut-3-ene-1,2-dione (squaric acid, SQ) is the most important representative of the oxocarbon acids family. Squaric acid derivatives can be promising pharmaceutical agents, due to their unique structural properties, from which novel drugs benefit: a planar aromatic ring, the ability to form hydrogen bonds, good reactivity and similarity with carboxylate, phosphate and amide groups. These properties make it suitable for three major applications in cancer treatment. Firstly, due to their excellent ion binding ability, the halogenated squaramides can be used as artificial ion transporters or mobile carriers to disrupt Na<sup>+</sup>/Cl<sup>-</sup> gradients in cancer cells, thus hindering lysosomal function and inducing apoptosis. Another advantage of this class is their bioisosteric properties. Such molecules have been reported to be selective inhibitors of HDACs, FAK, SNM1A, MMP and kinases, involved in tumor growth and metastasis. Finally, the cyclobutenedione moiety proves to be a great linker in complex radiopharmaceuticals, used in theranostics. Its aromaticity and good reactivity make the generation and stability of these drugs easy and efficient. Multiple derivatives containing the squamide motif have been the subject of in-vitro investigations and have demonstrated anti-cancer activity in the nanomolar range against tumor cell lines, including colorectal adenocarcinoma, breast cancer, gastric carcinoma and cervical cancer. On the other hand, squaric acid derivative-Navarixin, has already been evaluated in Phase II clinical trials for its potential efficacy in the treatment of solid tumors. In this context this review is the first looking into the potential applications of squaric acid derivatives as anticancer therapies. It analyzes experimental studies presented in articles published between 2000 and 2024.</p>","PeriodicalId":93932,"journal":{"name":"Chemico-biological interactions","volume":" ","pages":"111344"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-biological interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbi.2024.111344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3,4-Dihydroxycyclobut-3-ene-1,2-dione (squaric acid, SQ) is the most important representative of the oxocarbon acids family. Squaric acid derivatives can be promising pharmaceutical agents, due to their unique structural properties, from which novel drugs benefit: a planar aromatic ring, the ability to form hydrogen bonds, good reactivity and similarity with carboxylate, phosphate and amide groups. These properties make it suitable for three major applications in cancer treatment. Firstly, due to their excellent ion binding ability, the halogenated squaramides can be used as artificial ion transporters or mobile carriers to disrupt Na+/Cl- gradients in cancer cells, thus hindering lysosomal function and inducing apoptosis. Another advantage of this class is their bioisosteric properties. Such molecules have been reported to be selective inhibitors of HDACs, FAK, SNM1A, MMP and kinases, involved in tumor growth and metastasis. Finally, the cyclobutenedione moiety proves to be a great linker in complex radiopharmaceuticals, used in theranostics. Its aromaticity and good reactivity make the generation and stability of these drugs easy and efficient. Multiple derivatives containing the squamide motif have been the subject of in-vitro investigations and have demonstrated anti-cancer activity in the nanomolar range against tumor cell lines, including colorectal adenocarcinoma, breast cancer, gastric carcinoma and cervical cancer. On the other hand, squaric acid derivative-Navarixin, has already been evaluated in Phase II clinical trials for its potential efficacy in the treatment of solid tumors. In this context this review is the first looking into the potential applications of squaric acid derivatives as anticancer therapies. It analyzes experimental studies presented in articles published between 2000 and 2024.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信