Novel endophytic fungus Leptosphaeria sp. strain T-2 improves plant growth and environmental stress tolerance.

Taku Yamaguchi, Ryota Kataoka
{"title":"Novel endophytic fungus Leptosphaeria sp. strain T-2 improves plant growth and environmental stress tolerance.","authors":"Taku Yamaguchi, Ryota Kataoka","doi":"10.1007/s44154-024-00186-6","DOIUrl":null,"url":null,"abstract":"<p><p>Drought and salinity stress pose threats to agricultural production in drylands. Although breeding and genetic modification techniques have been employed to develop drought- and salt-tolerant crops, these methods are costly and risky. Hence, the potential application of endophytic fungi in dryland agriculture is being explored as a novel approach in improving plant tolerance to environmental stress. In this study, endophytic fungi with growth-promoting effects were isolated, characterized, and evaluated in terms of their ability to confer drought and stress tolerance to their host plants. Seventy-seven growth-promoting endophytic fungi belonging to 20 genera were isolated from barley roots; of these, strain T-2 elicited remarkable effects on plant growth parameters. Phylogenetic analysis revealed that strain T-2 belongs to genus Leptosphaeria, whose members are generally known as plant pathogens. Thus, Leptosphaeria sp. strain T-2 is a novel endophytic fungus that promotes plant growth. Moreover, it alleviated growth inhibition caused drought and salinity stress, as evidenced by the survival and maintained health of lettuce plants inoculated with strain T-2. The results of this study suggest that strain T-2 can be applied as a biofertilizer to improve agricultural production in drylands.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"52"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-024-00186-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drought and salinity stress pose threats to agricultural production in drylands. Although breeding and genetic modification techniques have been employed to develop drought- and salt-tolerant crops, these methods are costly and risky. Hence, the potential application of endophytic fungi in dryland agriculture is being explored as a novel approach in improving plant tolerance to environmental stress. In this study, endophytic fungi with growth-promoting effects were isolated, characterized, and evaluated in terms of their ability to confer drought and stress tolerance to their host plants. Seventy-seven growth-promoting endophytic fungi belonging to 20 genera were isolated from barley roots; of these, strain T-2 elicited remarkable effects on plant growth parameters. Phylogenetic analysis revealed that strain T-2 belongs to genus Leptosphaeria, whose members are generally known as plant pathogens. Thus, Leptosphaeria sp. strain T-2 is a novel endophytic fungus that promotes plant growth. Moreover, it alleviated growth inhibition caused drought and salinity stress, as evidenced by the survival and maintained health of lettuce plants inoculated with strain T-2. The results of this study suggest that strain T-2 can be applied as a biofertilizer to improve agricultural production in drylands.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信