Yi Ma, Xuhang Wu, Xiaoling Deng, Xudong Peng, Xiangkai Meng
{"title":"Mechanical and diffusion property and multi-objective optimization of rubber seals exposed to high-pressure hydrogen gas.","authors":"Yi Ma, Xuhang Wu, Xiaoling Deng, Xudong Peng, Xiangkai Meng","doi":"10.1177/00368504241304197","DOIUrl":null,"url":null,"abstract":"<p><p>As the critical components in hydrogen refueling, storage, and transportation systems, the degradation and failure of rubber O-ring seals under a high-pressure (HP) hydrogen environment (up to 100 MPa) directly affect hydrogen energy safety. Clarifying the interaction mechanism of hydrogen diffusion and the mechanical properties of rubber seals is essential for HP hydrogen infrastructure. A hydrogen diffusion-mechanical sequential numerical model is built to investigate the sealing performance and hydrogen diffusion behaviors of rubber seals using ABAQUS software. The effects of hydrogen swelling environmental pressure (5∼100 MPa) and stress-concentration gradient on mechanical and contact characteristics and hydrogen concentration distribution are analyzed for the rubber seals with/without backup rings, respectively. Furthermore, the orthogonal experimental and comprehensive frequency analysis methods are employed to evaluate the significance of the main structural and assembly parameters and obtain the optimal schemes of the rubber seals under the HP environment. The results show that the stress concentration and rubber extrusion easily occur at the sealing clearance of the O-rings with swelling after pre-compression and pressurization. The hydrogen diffusion of the O-ring is mainly driven by the concentration difference and stress gradient, with the former being the dominant factor. With the increase in the hydrogen pressure, the effective sealing rate along the sealing surface decreases sharply, and the non-uniformity of hydrogen concentration and the possibility of fatigue damage in the rubber O-rings increase. Two multi-objective optimization schemes (Ⅰ and Ⅱ) for the main structural and assembly parameters of rubber seals are obtained by intuitive analysis and comprehensive frequency analysis to improve the extrusion tendency and sealing reliability of rubber seals in the HP hydrogen environment.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 4","pages":"368504241304197"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241304197","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As the critical components in hydrogen refueling, storage, and transportation systems, the degradation and failure of rubber O-ring seals under a high-pressure (HP) hydrogen environment (up to 100 MPa) directly affect hydrogen energy safety. Clarifying the interaction mechanism of hydrogen diffusion and the mechanical properties of rubber seals is essential for HP hydrogen infrastructure. A hydrogen diffusion-mechanical sequential numerical model is built to investigate the sealing performance and hydrogen diffusion behaviors of rubber seals using ABAQUS software. The effects of hydrogen swelling environmental pressure (5∼100 MPa) and stress-concentration gradient on mechanical and contact characteristics and hydrogen concentration distribution are analyzed for the rubber seals with/without backup rings, respectively. Furthermore, the orthogonal experimental and comprehensive frequency analysis methods are employed to evaluate the significance of the main structural and assembly parameters and obtain the optimal schemes of the rubber seals under the HP environment. The results show that the stress concentration and rubber extrusion easily occur at the sealing clearance of the O-rings with swelling after pre-compression and pressurization. The hydrogen diffusion of the O-ring is mainly driven by the concentration difference and stress gradient, with the former being the dominant factor. With the increase in the hydrogen pressure, the effective sealing rate along the sealing surface decreases sharply, and the non-uniformity of hydrogen concentration and the possibility of fatigue damage in the rubber O-rings increase. Two multi-objective optimization schemes (Ⅰ and Ⅱ) for the main structural and assembly parameters of rubber seals are obtained by intuitive analysis and comprehensive frequency analysis to improve the extrusion tendency and sealing reliability of rubber seals in the HP hydrogen environment.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.