Hybrid contrastive multi-scenario learning for multi-task sequential-dependence recommendation

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qingqing Yi , Lunwen Wu , Jingjing Tang , Yujian Zeng , Zengchun Song
{"title":"Hybrid contrastive multi-scenario learning for multi-task sequential-dependence recommendation","authors":"Qingqing Yi ,&nbsp;Lunwen Wu ,&nbsp;Jingjing Tang ,&nbsp;Yujian Zeng ,&nbsp;Zengchun Song","doi":"10.1016/j.neunet.2024.106953","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-scenario and multi-task learning are crucial in industrial recommendation systems to deliver high-quality recommendations across diverse scenarios with minimal computational overhead. However, conventional models often fail to effectively leverage cross-scenario information, limiting their representational capabilities. Additionally, multi-step conversion tasks in real-world applications face challenges from sequential dependencies and increased data sparsity, particularly in later stages. To address these issues, we propose a Hybrid Contrastive Multi-scenario learning framework for Multi-task Sequential-dependence Recommendation (HCM<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>SR). In the scenario layer, hybrid contrastive learning captures both shared and scenario-specific information, while a scenario-aware multi-gate network enhances representations by evaluating cross-scenario relevance. In the task layer, an adaptive multi-task network transfers knowledge across sequential stages, mitigating data sparsity in long-path conversions. Extensive experiments on two public datasets and one industrial dataset validate the effectiveness of HCM<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>SR, with ablation studies confirming the contribution of each component.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"Article 106953"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024008827","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-scenario and multi-task learning are crucial in industrial recommendation systems to deliver high-quality recommendations across diverse scenarios with minimal computational overhead. However, conventional models often fail to effectively leverage cross-scenario information, limiting their representational capabilities. Additionally, multi-step conversion tasks in real-world applications face challenges from sequential dependencies and increased data sparsity, particularly in later stages. To address these issues, we propose a Hybrid Contrastive Multi-scenario learning framework for Multi-task Sequential-dependence Recommendation (HCM2SR). In the scenario layer, hybrid contrastive learning captures both shared and scenario-specific information, while a scenario-aware multi-gate network enhances representations by evaluating cross-scenario relevance. In the task layer, an adaptive multi-task network transfers knowledge across sequential stages, mitigating data sparsity in long-path conversions. Extensive experiments on two public datasets and one industrial dataset validate the effectiveness of HCM2SR, with ablation studies confirming the contribution of each component.
多任务顺序依赖推荐的混合对比多场景学习。
在工业推荐系统中,多场景和多任务学习对于在不同场景中以最小的计算开销提供高质量的推荐至关重要。然而,传统模型常常不能有效地利用跨场景信息,限制了它们的表示能力。此外,实际应用程序中的多步骤转换任务面临来自顺序依赖关系和数据稀疏性增加的挑战,特别是在后期阶段。为了解决这些问题,我们提出了一个用于多任务顺序依赖推荐(HCM2SR)的混合对比多场景学习框架。在场景层,混合对比学习捕获共享和特定于场景的信息,而场景感知的多门网络通过评估跨场景相关性来增强表示。在任务层,自适应多任务网络跨顺序阶段传输知识,减轻了长路径转换中的数据稀疏性。在两个公共数据集和一个工业数据集上进行的大量实验验证了HCM2SR的有效性,消融研究证实了每个成分的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信