{"title":"Evaluating the impact of neonicotinoids on aquatic non-target species: A comprehensive review.","authors":"Ahamadul Hoque Mandal, Auroshree Sadhu, Surajit Ghosh, Nimai Chandra Saha, Camilla Mossotto, Paolo Pastorino, Shubhajit Saha, Caterina Faggio","doi":"10.1016/j.etap.2024.104606","DOIUrl":null,"url":null,"abstract":"<p><p>Neonicotinoid insecticides (NNIs) are the fastest-growing class in agricultural protection. They target nicotinic acetylcholine receptors (nAChR) in pests, stimulating the nervous system at low doses and causing paralysis and death at higher concentrations. NNIs are used in crop protection, seed treatment, forestry, agriculture, and flea control in domestic cattle. Effective at lower concentrations and offering long-term control, NNIs are favoured for their systemic activity. However, due to their water solubility, mobility, and moderate persistence, NNIs easily contaminate adjacent aquatic environments via runoff, leaching, or spray drift. While less toxic to vertebrates, their widespread use poses threats to aquatic and terrestrial organisms, causing neurotoxicity, nephrotoxicity, cytotoxicity, genotoxicity, immunotoxicity, hepatotoxicity, endocrine disruption, and reproductive malformations. This review synthesizes research to address knowledge gaps on the environmental impact of NNIs and proposes policies to mitigate their harmful effects on aquatic non-target species.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104606"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.etap.2024.104606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neonicotinoid insecticides (NNIs) are the fastest-growing class in agricultural protection. They target nicotinic acetylcholine receptors (nAChR) in pests, stimulating the nervous system at low doses and causing paralysis and death at higher concentrations. NNIs are used in crop protection, seed treatment, forestry, agriculture, and flea control in domestic cattle. Effective at lower concentrations and offering long-term control, NNIs are favoured for their systemic activity. However, due to their water solubility, mobility, and moderate persistence, NNIs easily contaminate adjacent aquatic environments via runoff, leaching, or spray drift. While less toxic to vertebrates, their widespread use poses threats to aquatic and terrestrial organisms, causing neurotoxicity, nephrotoxicity, cytotoxicity, genotoxicity, immunotoxicity, hepatotoxicity, endocrine disruption, and reproductive malformations. This review synthesizes research to address knowledge gaps on the environmental impact of NNIs and proposes policies to mitigate their harmful effects on aquatic non-target species.