The attenuation of doxorubicin-induced testicular toxicity with improved testicular histoarchitecture of mice by the bioactive compounds in Solanum anomalum leaves: Experimental and computational studies.

Q1 Environmental Science
Toxicology Reports Pub Date : 2024-11-21 eCollection Date: 2024-12-01 DOI:10.1016/j.toxrep.2024.101827
Edet Effiong Asanga, Jude Efiom Okokon, Akaninyene Paul Joseph, Chinedum Martins Ekeleme, Somto Basil Ilechukwu, Martin Osita Anagboso, Mercy Umoh, Atim-Ebim Michael Raymond
{"title":"The attenuation of doxorubicin-induced testicular toxicity with improved testicular histoarchitecture of mice by the bioactive compounds in <i>Solanum anomalum</i> leaves: Experimental and computational studies.","authors":"Edet Effiong Asanga, Jude Efiom Okokon, Akaninyene Paul Joseph, Chinedum Martins Ekeleme, Somto Basil Ilechukwu, Martin Osita Anagboso, Mercy Umoh, Atim-Ebim Michael Raymond","doi":"10.1016/j.toxrep.2024.101827","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin, as an antibiotic causes toxicity in human tissues through the generation of oxidant species; however, <i>Solanum anomalum</i> (Solanaceae) is ethnopharmacologically and scientifically reported to possess antidotal activities. This study was designed to validate the antidotal potency of the plant's bioactive compounds on rats' testes following induction with doxorubicin through the evaluation of oxidative stress markers, lipid peroxidation indices, testes' histological sections, and <i>in silico</i> profiling of the plant's bioactive compounds against some proteins. The collection and preparation of the plant extract, testicular toxicity induction, seminal analysis, assay of testosterone and oxidative stress markers, lipid peroxidation profiling, histomorphological studies, retrieval of catalase, superoxide dismutase, and glutathione peroxidase from PDB, GC-MS, ADME, and docking analyses followed standard protocols. In addition, Swiss-ADME and Auto Dock Vina 4.2 tool enabled drug-likeness, pharmacokinetic properties, and molecular docking analyses. The administration of differential dosages (70-210 mg/kg) of the extract to male rats induced with doxorubicin revealed that the serum levels of malondialdehyde (MDA), total cholesterol (TC), triglycerides (TG), LDL-C, and VLDL-C were significantly decreased, whereas significant increases were observed in the levels of HDL-C, testosterone, GSH, SOD, GPx, and CAT when compared to negative control animals. The histological findings suggested strong testicular protective potential that corroborated the chemical pathological alterations. Therefore, the compounds (squalene, β-sitosterol, cis-pinane, 1,4-Eicosadiene, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, heptacosane, and bicyclo-heptanes-2,5,6-trimethylsilyl) characterized from <i>S. anomalum</i> leaf that revealed remarkable binding energies, pharmacokinetics, physicochemical, and drug-likeness properties contributed to the attenuation of the doxorubicin-induced testicular toxicity; hence, they possess antidotal activities.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"101827"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Doxorubicin, as an antibiotic causes toxicity in human tissues through the generation of oxidant species; however, Solanum anomalum (Solanaceae) is ethnopharmacologically and scientifically reported to possess antidotal activities. This study was designed to validate the antidotal potency of the plant's bioactive compounds on rats' testes following induction with doxorubicin through the evaluation of oxidative stress markers, lipid peroxidation indices, testes' histological sections, and in silico profiling of the plant's bioactive compounds against some proteins. The collection and preparation of the plant extract, testicular toxicity induction, seminal analysis, assay of testosterone and oxidative stress markers, lipid peroxidation profiling, histomorphological studies, retrieval of catalase, superoxide dismutase, and glutathione peroxidase from PDB, GC-MS, ADME, and docking analyses followed standard protocols. In addition, Swiss-ADME and Auto Dock Vina 4.2 tool enabled drug-likeness, pharmacokinetic properties, and molecular docking analyses. The administration of differential dosages (70-210 mg/kg) of the extract to male rats induced with doxorubicin revealed that the serum levels of malondialdehyde (MDA), total cholesterol (TC), triglycerides (TG), LDL-C, and VLDL-C were significantly decreased, whereas significant increases were observed in the levels of HDL-C, testosterone, GSH, SOD, GPx, and CAT when compared to negative control animals. The histological findings suggested strong testicular protective potential that corroborated the chemical pathological alterations. Therefore, the compounds (squalene, β-sitosterol, cis-pinane, 1,4-Eicosadiene, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, heptacosane, and bicyclo-heptanes-2,5,6-trimethylsilyl) characterized from S. anomalum leaf that revealed remarkable binding energies, pharmacokinetics, physicochemical, and drug-likeness properties contributed to the attenuation of the doxorubicin-induced testicular toxicity; hence, they possess antidotal activities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信