Joep van Genderingen, Dan Nguyen, Franziska Knuth, Hazem A A Nomer, Luca Incrocci, Abdul Wahab M Sharfo, András Zolnay, Uwe Oelfke, Steve Jiang, Linda Rossi, Ben J M Heijmen, Sebastiaan Breedveld
{"title":"Deep learning dose prediction to approach Erasmus-iCycle dosimetric plan quality within seconds for instantaneous treatment planning.","authors":"Joep van Genderingen, Dan Nguyen, Franziska Knuth, Hazem A A Nomer, Luca Incrocci, Abdul Wahab M Sharfo, András Zolnay, Uwe Oelfke, Steve Jiang, Linda Rossi, Ben J M Heijmen, Sebastiaan Breedveld","doi":"10.1016/j.radonc.2024.110662","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Fast, high-quality deep learning (DL) prediction of patient-specific 3D dose distributions can enable instantaneous treatment planning (IP), in which the treating physician can evaluate the dose and approve the plan immediately after contouring, rather than days later. This would greatly benefit clinical workload, patient waiting times and treatment quality. IP requires that predicted dose distributions closely match the ground truth. This study examines how training dataset size and model size affect dose prediction accuracy for Erasmus-iCycle GT plans to enable IP.</p><p><strong>Materials and methods: </strong>For 1250 prostate patients, dose distributions were automatically generated using Erasmus-iCycle. Hierarchically Densely Connected U-Nets with 2/3/4/5/6 pooling layers were trained with datasets of 50/100/250/500/1000 patients, using a validation set of 100 patients. A fixed test set of 150 patients was used for evaluations.</p><p><strong>Results: </strong>For all model sizes, prediction accuracy increased with the number of training patients, without levelling off at 1000 patients. For 4-6 level models with 1000 training patients, prediction accuracies were high and comparable. For 6 levels and 1000 training patients, the median prediction errors and interquartile ranges for PTV V<sub>95%</sub>, rectum V<sub>75</sub><sub>Gy</sub> and bladder V<sub>65</sub><sub>Gy</sub> were 0.01 [-0.06,0.15], 0.01 [-0.20,0.29] and -0.02 [-0.27,0.27] %-point. Dose prediction times were around 1.2 s.</p><p><strong>Conclusion: </strong>Although even for 1000 training patients there was no convergence in obtained prediction accuracy yet, the accuracy for the 6-level model with 1000 training patients may be adequate for the pursued instantaneous planning, which is subject of further research.</p>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":" ","pages":"110662"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.radonc.2024.110662","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Fast, high-quality deep learning (DL) prediction of patient-specific 3D dose distributions can enable instantaneous treatment planning (IP), in which the treating physician can evaluate the dose and approve the plan immediately after contouring, rather than days later. This would greatly benefit clinical workload, patient waiting times and treatment quality. IP requires that predicted dose distributions closely match the ground truth. This study examines how training dataset size and model size affect dose prediction accuracy for Erasmus-iCycle GT plans to enable IP.
Materials and methods: For 1250 prostate patients, dose distributions were automatically generated using Erasmus-iCycle. Hierarchically Densely Connected U-Nets with 2/3/4/5/6 pooling layers were trained with datasets of 50/100/250/500/1000 patients, using a validation set of 100 patients. A fixed test set of 150 patients was used for evaluations.
Results: For all model sizes, prediction accuracy increased with the number of training patients, without levelling off at 1000 patients. For 4-6 level models with 1000 training patients, prediction accuracies were high and comparable. For 6 levels and 1000 training patients, the median prediction errors and interquartile ranges for PTV V95%, rectum V75Gy and bladder V65Gy were 0.01 [-0.06,0.15], 0.01 [-0.20,0.29] and -0.02 [-0.27,0.27] %-point. Dose prediction times were around 1.2 s.
Conclusion: Although even for 1000 training patients there was no convergence in obtained prediction accuracy yet, the accuracy for the 6-level model with 1000 training patients may be adequate for the pursued instantaneous planning, which is subject of further research.
期刊介绍:
Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.