Tania Y. Estévez-Lao, Lindsay E. Martin, Julián F. Hillyer
{"title":"Activation of the immune deficiency pathway (IMD) reduces the mosquito heart rate via a nitric oxide-based mechanism","authors":"Tania Y. Estévez-Lao, Lindsay E. Martin, Julián F. Hillyer","doi":"10.1016/j.jinsphys.2024.104738","DOIUrl":null,"url":null,"abstract":"<div><div>The immune deficiency pathway (IMD) is an important component of the antibacterial, antimalarial and antiviral response in mosquitoes. The IMD pathway also drives the infection induced migration of hemocytes to the heart. During an infection, periostial hemocytes kill pathogens in areas of high hemolymph flow and produce nitric oxide that reduces the heart rate. Here, we investigated the consequences of repressing the IMD pathway by silencing the transcription factor, rel2, or activating the pathway by silencing the negative regulator, caspar, in <em>Anopheles gambiae</em>. In uninfected mosquitoes, repression of the IMD pathway does not affect the circulatory system. However, activating the IMD pathway decreases the heart rate, and this correlates with increased transcription and activity of nitric oxide synthase (NOS), but not increased transcription of the lysozymes, LysC1 or LysC2. In infected mosquitoes, however, activation of the IMD pathway does not affect the heart rate but repression of the pathway decreases the heart rate. This latter phenotype correlates with increased transcription and activity of nitric oxide synthase, which is likely due to an increase in infection intensity. In conclusion, we demonstrate that a major immune signaling pathway that regulates periostial hemocyte aggregation, the IMD pathway, reduces the heart rate via a nitric oxide-based mechanism.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"161 ","pages":"Article 104738"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191024001264","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The immune deficiency pathway (IMD) is an important component of the antibacterial, antimalarial and antiviral response in mosquitoes. The IMD pathway also drives the infection induced migration of hemocytes to the heart. During an infection, periostial hemocytes kill pathogens in areas of high hemolymph flow and produce nitric oxide that reduces the heart rate. Here, we investigated the consequences of repressing the IMD pathway by silencing the transcription factor, rel2, or activating the pathway by silencing the negative regulator, caspar, in Anopheles gambiae. In uninfected mosquitoes, repression of the IMD pathway does not affect the circulatory system. However, activating the IMD pathway decreases the heart rate, and this correlates with increased transcription and activity of nitric oxide synthase (NOS), but not increased transcription of the lysozymes, LysC1 or LysC2. In infected mosquitoes, however, activation of the IMD pathway does not affect the heart rate but repression of the pathway decreases the heart rate. This latter phenotype correlates with increased transcription and activity of nitric oxide synthase, which is likely due to an increase in infection intensity. In conclusion, we demonstrate that a major immune signaling pathway that regulates periostial hemocyte aggregation, the IMD pathway, reduces the heart rate via a nitric oxide-based mechanism.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.