{"title":"Selenium improves wheat antioxidant capacity, photosynthetic capacity, and growth under cadmium stress.","authors":"L M Wu, N H Lu","doi":"10.32615/ps.2024.027","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium stress (CS) induced the peroxide damage and inhibited wheat photosynthetic capacity and growth. Compared to CS, selenium (Se) application plus CS bolstered chlorophyll and carotenoid contents, photosynthetic rate, the maximum photochemical efficiency of PSII, the quantum yield of PSII photochemistry, and photochemical quenching, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and gamma-glutamylcysteine synthetase activities, ascorbic acid and glutathione contents, AsA/dehydroascorbic acid and GSH/oxidized glutathione, and decreased nonphotochemical quenching (q<sub>N</sub>), antioxidant biomarkers malondialdehyde and hydrogen peroxide contents, and electrolyte leakage (EL). At the same time, Se alone declined antioxidant biomarkers contents, q<sub>N</sub> and EL, and augmented the rest of the aforementioned indexes. Our research implied that Se upregulated wheat's antioxidant capacity. In this way, Se improved wheat photosynthetic performance and growth, especially for 10 μM sodium selenite (Na<sub>2</sub>SeO<sub>3</sub>). Consequently, 10 μM Na<sub>2</sub>SeO<sub>3</sub> may be considered a useful exogenous substance to reinforce wheat cadmium tolerance.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"232-239"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2024.027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium stress (CS) induced the peroxide damage and inhibited wheat photosynthetic capacity and growth. Compared to CS, selenium (Se) application plus CS bolstered chlorophyll and carotenoid contents, photosynthetic rate, the maximum photochemical efficiency of PSII, the quantum yield of PSII photochemistry, and photochemical quenching, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and gamma-glutamylcysteine synthetase activities, ascorbic acid and glutathione contents, AsA/dehydroascorbic acid and GSH/oxidized glutathione, and decreased nonphotochemical quenching (qN), antioxidant biomarkers malondialdehyde and hydrogen peroxide contents, and electrolyte leakage (EL). At the same time, Se alone declined antioxidant biomarkers contents, qN and EL, and augmented the rest of the aforementioned indexes. Our research implied that Se upregulated wheat's antioxidant capacity. In this way, Se improved wheat photosynthetic performance and growth, especially for 10 μM sodium selenite (Na2SeO3). Consequently, 10 μM Na2SeO3 may be considered a useful exogenous substance to reinforce wheat cadmium tolerance.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.