Y F Zhang, H Cai, E T You, X Q Qiao, Z P Gao, G X Chen
{"title":"Physiological response to low-nitrogen stress and comprehensive evaluation in four rice varieties.","authors":"Y F Zhang, H Cai, E T You, X Q Qiao, Z P Gao, G X Chen","doi":"10.32615/ps.2024.028","DOIUrl":null,"url":null,"abstract":"<p><p>Rice (<i>Oryza sativa</i> L.) research has rarely focused on the response to low-nitrogen stress in different subtypes previously and lacked a low-nitrogen tolerance evaluation system. Here, we investigated the physiological characteristics under moderate and low-nitrogen stress conditions in two <i>japonica</i> cultivars (NG46 and NG9108) and two <i>indica</i> cultivars (LYP9 and 9311). Using subordinate function analysis and principal component analysis, the low-nitrogen tolerance of four rice varieties was comprehensively evaluated; stomatal conductance, total carotenoid content, and nitrate reductase NR activity were taken as the low-nitrogen tolerance evaluation system. Among the four rice cultivars, NG46 and LYP9 had significant advantages in photosynthetic gas-exchange capacity, optimizing the balance between light-harvesting capacity, the ratio of reaction center inactivation, the magnitude of decrease in heat dissipation, and nitrogen-metabolism enzyme activities. The results investigated the physiological mechanisms of rice adaptation to low-nitrogen stress and offered a reliable method for assessing low-nitrogen tolerance in rice.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"252-262"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2024.028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rice (Oryza sativa L.) research has rarely focused on the response to low-nitrogen stress in different subtypes previously and lacked a low-nitrogen tolerance evaluation system. Here, we investigated the physiological characteristics under moderate and low-nitrogen stress conditions in two japonica cultivars (NG46 and NG9108) and two indica cultivars (LYP9 and 9311). Using subordinate function analysis and principal component analysis, the low-nitrogen tolerance of four rice varieties was comprehensively evaluated; stomatal conductance, total carotenoid content, and nitrate reductase NR activity were taken as the low-nitrogen tolerance evaluation system. Among the four rice cultivars, NG46 and LYP9 had significant advantages in photosynthetic gas-exchange capacity, optimizing the balance between light-harvesting capacity, the ratio of reaction center inactivation, the magnitude of decrease in heat dissipation, and nitrogen-metabolism enzyme activities. The results investigated the physiological mechanisms of rice adaptation to low-nitrogen stress and offered a reliable method for assessing low-nitrogen tolerance in rice.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.