Efficient production of spermidine from Bacillus amyloliquefaciens by enhancing synthesis pathway, blocking degradation pathway and increasing precursor supply.
IF 4.1 2区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Efficient production of spermidine from Bacillus amyloliquefaciens by enhancing synthesis pathway, blocking degradation pathway and increasing precursor supply.","authors":"Ziyue Zhao, Ailing Guo, Dian Zou, Zhou Li, Xuetuan Wei","doi":"10.1016/j.jbiotec.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>Spermidine has broad application potential in food, medicine and other fields. In this study, a novel Bacillus amyloliquefaciens cell factory was constructed for production of spermidine from renewablebiomass resources. Firstly, the speB gene was found to be optimal for synthesis of spermidine, and the function of SpeB was explained by amino acid sequence analysis and molecular docking. By replacing the native promoter of the speEB operon with the P43, the synthesis of spermidine was significantly enhanced in B. amyloliquefaciens HSPM1-P43speEB. After knockout of the genes yobN and bltD associated with spermidine degradation, the spermidine titer of the strain HSPM2 was further improved to 115.96 mg/L, increased by 108 % compared to HSPM1-P43speEB. Subsequently, the titer of spermidine was further increased to 277.47 mg/L through enhancing the supply of the precursor methionine by overexpression of speD. Finally, the renewable biomass resources, xylose and feather meal were optimized to produce spermidine, and the maximum titer is up to 588.10 mg/L after optimization. In conclusion, an efficient spermidine producing B. amyloliquefaciens was constructed through combinatorial metabolic engineering strategies, and the sustainable production of spermidine was achieved using the biomass resources of xylose and feather meal.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":"87-96"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.12.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spermidine has broad application potential in food, medicine and other fields. In this study, a novel Bacillus amyloliquefaciens cell factory was constructed for production of spermidine from renewablebiomass resources. Firstly, the speB gene was found to be optimal for synthesis of spermidine, and the function of SpeB was explained by amino acid sequence analysis and molecular docking. By replacing the native promoter of the speEB operon with the P43, the synthesis of spermidine was significantly enhanced in B. amyloliquefaciens HSPM1-P43speEB. After knockout of the genes yobN and bltD associated with spermidine degradation, the spermidine titer of the strain HSPM2 was further improved to 115.96 mg/L, increased by 108 % compared to HSPM1-P43speEB. Subsequently, the titer of spermidine was further increased to 277.47 mg/L through enhancing the supply of the precursor methionine by overexpression of speD. Finally, the renewable biomass resources, xylose and feather meal were optimized to produce spermidine, and the maximum titer is up to 588.10 mg/L after optimization. In conclusion, an efficient spermidine producing B. amyloliquefaciens was constructed through combinatorial metabolic engineering strategies, and the sustainable production of spermidine was achieved using the biomass resources of xylose and feather meal.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.