Steve Vucic, Nathan Pavey, Parvathi Menon, Michael Babayev, Anna Maslyukova, Anatoliy Muraviev, Matthew C Kiernan
{"title":"Neurophysiological assessment of cortical motor function: A direct comparison of methodologies.","authors":"Steve Vucic, Nathan Pavey, Parvathi Menon, Michael Babayev, Anna Maslyukova, Anatoliy Muraviev, Matthew C Kiernan","doi":"10.1016/j.clinph.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Assessment of cortical function with threshold tracking transcranial magnetic stimulation (TT-TMS) has developed as a biomarker to inform disease pathophysiology, particularly in neurodegenerative disease and dementia. At present, a fully integrated testing system does not exist. To advance clinical utility, and to streamline software design to integrate with diagnostic approaches in an outpatient setting, the present series of studies assessed the effects of altering diagnostic paradigms to measure interstimulus interval (ISI) including serial ascending [T-SICIs] and parallel [T-SICIp] methodologies as measures of cortical motor function (the MagXite software).</p><p><strong>Methods: </strong>Cortical excitability was assessed in 30 healthy controls with a figure-of-eight coil, using an integrated approach compared to previously established experimental paradigms. Motor evoked responses were recorded over the contralateral abductor pollicis brevis muscle. Short interval intracortical inhibition (SICI) was recorded with each testing paradigm and validated in a healthy control cohort.</p><p><strong>Results: </strong>The integrated system determined a robust measure of T-SICIs between ISI 1-to-7 ms (16.6 ± 2.2 %) that was comparable to previously established testing paradigms (P = 0.34), but greater than T-SICIp (MagXite 10.7 ± 1.5 %, P = 0.016; Sydney TT-TMS 8.7 ± 1.4 %, P = 0.03). SICI peaks at ISI 1 and 2.5-to-3 ms were evident with both protocols. Significant correlations were evident between mean T-SICIs-<sub>MagXite</sub> and T-SICIp-<sub>MagXite</sub> (R = 0.599, P < 0.001).</p><p><strong>Conclusion: </strong>The present series validates a fully integrated motor cortical functional assessment to provide reproducible measures of SICI, with data obtained for intracortical inhibition that is more prominent when assessed using the method of serial ascending order.</p><p><strong>Significance: </strong>An integrated system for transcranial magnetic stimulation of the human motor system has been validated for clinical practice, suitable for the assessment of cortical function in neurological disease in an outpatient clinic setting.</p>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"170 ","pages":"14-21"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.clinph.2024.12.001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Assessment of cortical function with threshold tracking transcranial magnetic stimulation (TT-TMS) has developed as a biomarker to inform disease pathophysiology, particularly in neurodegenerative disease and dementia. At present, a fully integrated testing system does not exist. To advance clinical utility, and to streamline software design to integrate with diagnostic approaches in an outpatient setting, the present series of studies assessed the effects of altering diagnostic paradigms to measure interstimulus interval (ISI) including serial ascending [T-SICIs] and parallel [T-SICIp] methodologies as measures of cortical motor function (the MagXite software).
Methods: Cortical excitability was assessed in 30 healthy controls with a figure-of-eight coil, using an integrated approach compared to previously established experimental paradigms. Motor evoked responses were recorded over the contralateral abductor pollicis brevis muscle. Short interval intracortical inhibition (SICI) was recorded with each testing paradigm and validated in a healthy control cohort.
Results: The integrated system determined a robust measure of T-SICIs between ISI 1-to-7 ms (16.6 ± 2.2 %) that was comparable to previously established testing paradigms (P = 0.34), but greater than T-SICIp (MagXite 10.7 ± 1.5 %, P = 0.016; Sydney TT-TMS 8.7 ± 1.4 %, P = 0.03). SICI peaks at ISI 1 and 2.5-to-3 ms were evident with both protocols. Significant correlations were evident between mean T-SICIs-MagXite and T-SICIp-MagXite (R = 0.599, P < 0.001).
Conclusion: The present series validates a fully integrated motor cortical functional assessment to provide reproducible measures of SICI, with data obtained for intracortical inhibition that is more prominent when assessed using the method of serial ascending order.
Significance: An integrated system for transcranial magnetic stimulation of the human motor system has been validated for clinical practice, suitable for the assessment of cortical function in neurological disease in an outpatient clinic setting.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.