Optimizing critical quality attributes of fast disintegrating tablets using artificial neural networks: a scientific benchmark study.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Jagruti Desai, Prince Dhameliya, Swayamprakash Patel
{"title":"Optimizing critical quality attributes of fast disintegrating tablets using artificial neural networks: a scientific benchmark study.","authors":"Jagruti Desai, Prince Dhameliya, Swayamprakash Patel","doi":"10.1080/03639045.2024.2434640","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study is to create predictive models utilizing machine learning algorithms, including Artificial Neural Networks (ANN), k-nearest neighbor (kNN), support vector machines (SVM), and linear regression, to predict critical quality attributes (CQAs) such as hardness, friability, and disintegration time of fast disintegrating tablets (FDTs).</p><p><strong>Methods: </strong>A dataset of 864 batches of FDTs was generated by varying binder types and amounts, disintegrants, diluents, punch sizes, and compression forces. Preprocessing steps included normalizing numerical features based on industry standards, one-hot encoding for categorical variables, and addressing outliers to ensure data consistency. Four machine learning models were trained and evaluated on R<sup>2</sup> values and mean squared error (MSE). Feature importance was analyzed using permutation importance, and statistical validation (<i>p</i> < 0.05) and confidence intervals were computed for model performance. The 'differential_evolution' function was used to optimize the formulation.</p><p><strong>Results: </strong>Among the models, ANN demonstrated the highest predictive accuracy, achieving R<sup>2</sup> values up to 0.9550 with the lowest MSE across training and test datasets, outperforming kNN, SVM, and linear regression. The ANN's ability to model complex, non-linear interactions between formulation variables was statistically significant, as validated through six checkpoint batches of acetylsalicylic acid FDTs. The feature importance analysis revealed compression force, binder type, and punch size as the most influential factors affecting hardness, while disintegrant type influenced friability. The 'differential_evolution' function effectively optimized the CQAs, resulting in FDTs with ideal characteristics.</p><p><strong>Conclusion: </strong>The ANN model, integrated with differential evolution, provided a robust tool for optimizing FDT formulations by accurately predicting CQAs and reducing the need for extensive experimental trials. Compared to traditional optimization methods, ANN excels in capturing intricate multi-variable relationships, making it a valuable approach for scaling beyond acetylsalicylic acid to other formulations. This method enhances the consistency and efficiency of tablet formulation, supporting broader pharmaceutical applications.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"995-1007"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2434640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The objective of this study is to create predictive models utilizing machine learning algorithms, including Artificial Neural Networks (ANN), k-nearest neighbor (kNN), support vector machines (SVM), and linear regression, to predict critical quality attributes (CQAs) such as hardness, friability, and disintegration time of fast disintegrating tablets (FDTs).

Methods: A dataset of 864 batches of FDTs was generated by varying binder types and amounts, disintegrants, diluents, punch sizes, and compression forces. Preprocessing steps included normalizing numerical features based on industry standards, one-hot encoding for categorical variables, and addressing outliers to ensure data consistency. Four machine learning models were trained and evaluated on R2 values and mean squared error (MSE). Feature importance was analyzed using permutation importance, and statistical validation (p < 0.05) and confidence intervals were computed for model performance. The 'differential_evolution' function was used to optimize the formulation.

Results: Among the models, ANN demonstrated the highest predictive accuracy, achieving R2 values up to 0.9550 with the lowest MSE across training and test datasets, outperforming kNN, SVM, and linear regression. The ANN's ability to model complex, non-linear interactions between formulation variables was statistically significant, as validated through six checkpoint batches of acetylsalicylic acid FDTs. The feature importance analysis revealed compression force, binder type, and punch size as the most influential factors affecting hardness, while disintegrant type influenced friability. The 'differential_evolution' function effectively optimized the CQAs, resulting in FDTs with ideal characteristics.

Conclusion: The ANN model, integrated with differential evolution, provided a robust tool for optimizing FDT formulations by accurately predicting CQAs and reducing the need for extensive experimental trials. Compared to traditional optimization methods, ANN excels in capturing intricate multi-variable relationships, making it a valuable approach for scaling beyond acetylsalicylic acid to other formulations. This method enhances the consistency and efficiency of tablet formulation, supporting broader pharmaceutical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信