{"title":"RNA methylation: where to from here for hematologic malignancies?","authors":"Andrew Adel Guirguis","doi":"10.1016/j.exphem.2024.104694","DOIUrl":null,"url":null,"abstract":"<p><p>RNA methylation and the machinery that regulates or \"reads\" its expression has recently been implicated in the pathogenesis of acute myeloid leukemia (AML) and other hematologic malignancies. Modulation of these epigenetic marks has started to become a reality as several companies around the world seek to leverage this knowledge therapeutically in the clinic. Although the bases of observed activity in AML have been described by numerous groups, the exact context in which these therapies will ultimately be used remains to be properly determined. Although context is likely to be of great importance here, a more \"global\" mechanism of action might allow for more widespread applicability to multiple diseases or disease subtypes. In other areas such as the myelodysplastic and other preleukemic syndromes, data remain sparse. Ongoing work is needed to determine whether therapeutic modulation of RNA modifications is a viable and biologically plausible approach in these cases. Regardless of the outcomes, this is an exciting era for \"epitranscriptomics\" as we navigate a pathway forward. Here, I describe the current knowledge around RNA methylation and hematologic malignancies including some of the relevant questions that are yet to be answered.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104694"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2024.104694","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA methylation and the machinery that regulates or "reads" its expression has recently been implicated in the pathogenesis of acute myeloid leukemia (AML) and other hematologic malignancies. Modulation of these epigenetic marks has started to become a reality as several companies around the world seek to leverage this knowledge therapeutically in the clinic. Although the bases of observed activity in AML have been described by numerous groups, the exact context in which these therapies will ultimately be used remains to be properly determined. Although context is likely to be of great importance here, a more "global" mechanism of action might allow for more widespread applicability to multiple diseases or disease subtypes. In other areas such as the myelodysplastic and other preleukemic syndromes, data remain sparse. Ongoing work is needed to determine whether therapeutic modulation of RNA modifications is a viable and biologically plausible approach in these cases. Regardless of the outcomes, this is an exciting era for "epitranscriptomics" as we navigate a pathway forward. Here, I describe the current knowledge around RNA methylation and hematologic malignancies including some of the relevant questions that are yet to be answered.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.