Ravishankar Jaiswal, Girdhar Bhati, Shakil Ahmed, Mohammad Imran Siddiqi
{"title":"iDCNNPred: an interpretable deep learning model for virtual screening and identification of PI3Ka inhibitors against triple-negative breast cancer.","authors":"Ravishankar Jaiswal, Girdhar Bhati, Shakil Ahmed, Mohammad Imran Siddiqi","doi":"10.1007/s11030-024-11055-9","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) lacks estrogen, progesterone, and HER2 expression, accounting for 15-20% of breast cancer cases. It is challenging due to low therapeutic response, heterogeneity, and aggressiveness. The PI3Ka isoform is a promising therapeutic target, often hyperactivated in TNBC, contributing to uncontrolled growth and cancer cell formation. We have proposed an interpretable deep convolutional neural network prediction (iDCNNPred) system using 2D molecular images to classify bioactivity and identify potential PI3Ka inhibitors. We built Custom-DCNN models and pre-trained models such as AlexNet, SqueezeNet, and VGG19 by using the Bayesian optimization algorithm, and found that our Custom-DCNN model performed better than a pre-trained model with lower complexity and memory usage. All top-performed models were screened with the Maybridge Chemical library to find predictive hit molecules. The screened molecules were further evaluated for protein-ligand interaction with molecular docking and finally 12 promising hits were shortlisted for biological validation using in-vitro PI3K inhibition studies. After biological evaluation, 4 potent molecules with different structural moieties were identified, and these molecules present new starting scaffolds for further improvement in terms of their potency and selectivity as PI3K inhibitors with the help of medicinal chemistry efforts. Furthermore, we also showed the significance of the interpretation and visualization of the model's predictions by the Grad-CAM technique, enhancing the robustness, transparency, and interpretability of the model's predictions. The data and script files and prediction run of models used for this study to reproduce the experiment are available in the GitHub repository at https://github.com/ravishankar1307/iDCNNPred.git .</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11055-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen, progesterone, and HER2 expression, accounting for 15-20% of breast cancer cases. It is challenging due to low therapeutic response, heterogeneity, and aggressiveness. The PI3Ka isoform is a promising therapeutic target, often hyperactivated in TNBC, contributing to uncontrolled growth and cancer cell formation. We have proposed an interpretable deep convolutional neural network prediction (iDCNNPred) system using 2D molecular images to classify bioactivity and identify potential PI3Ka inhibitors. We built Custom-DCNN models and pre-trained models such as AlexNet, SqueezeNet, and VGG19 by using the Bayesian optimization algorithm, and found that our Custom-DCNN model performed better than a pre-trained model with lower complexity and memory usage. All top-performed models were screened with the Maybridge Chemical library to find predictive hit molecules. The screened molecules were further evaluated for protein-ligand interaction with molecular docking and finally 12 promising hits were shortlisted for biological validation using in-vitro PI3K inhibition studies. After biological evaluation, 4 potent molecules with different structural moieties were identified, and these molecules present new starting scaffolds for further improvement in terms of their potency and selectivity as PI3K inhibitors with the help of medicinal chemistry efforts. Furthermore, we also showed the significance of the interpretation and visualization of the model's predictions by the Grad-CAM technique, enhancing the robustness, transparency, and interpretability of the model's predictions. The data and script files and prediction run of models used for this study to reproduce the experiment are available in the GitHub repository at https://github.com/ravishankar1307/iDCNNPred.git .
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;