Ke-Yu Zhao, Yi-Xiang Du, Hui-Min Cao, Li-Ya Su, Xiu-Lan Su, Xian Li
{"title":"The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering.","authors":"Ke-Yu Zhao, Yi-Xiang Du, Hui-Min Cao, Li-Ya Su, Xiu-Lan Su, Xian Li","doi":"10.1016/j.colsurfb.2024.114435","DOIUrl":null,"url":null,"abstract":"<p><p>Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"247 ","pages":"114435"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.