{"title":"A comprehensive review of antibiotics stress on anammox systems: Mechanisms, applications, and challenges.","authors":"Zhimin He, Gongduan Fan, Zongqiong Xu, Shiyun Wu, Jiankun Xie, Wei Qiang, Kai-Qin Xu","doi":"10.1016/j.biortech.2024.131950","DOIUrl":null,"url":null,"abstract":"<p><p>Anaerobic ammonia oxidation (anammox), an energy-efficient technology for treating ammonium-rich wastewater, faces the challenge of antibiotic stress in sewage. This paper systematically evaluated the impact of antibiotics on anammox by considering both inhibitory effects and recovery duration. This review focused on cellular responses, including extracellular polymeric substances (EPS), quorum sensing (QS), and enzymes. Then, the physiological properties of cells and the interactions between nitrogen and carbon metabolism under antibiotic stress were discussed, particularly within the anammoxosome. The microbial community evolution and the development and transfer of antibiotic resistance genes (ARGs) were further analyzed to reveal the resistance mechanisms of anammox. To address the limitations imposed by antibiotics, the development of bio-augmentation and combined processes based on molecular biology techniques, such as bio-electrochemical systems (BES), has been suggested. This review offered new insights into the mechanisms of antibiotic inhibition during the anammox process and aimed to advance their engineering applications.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131950"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131950","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobic ammonia oxidation (anammox), an energy-efficient technology for treating ammonium-rich wastewater, faces the challenge of antibiotic stress in sewage. This paper systematically evaluated the impact of antibiotics on anammox by considering both inhibitory effects and recovery duration. This review focused on cellular responses, including extracellular polymeric substances (EPS), quorum sensing (QS), and enzymes. Then, the physiological properties of cells and the interactions between nitrogen and carbon metabolism under antibiotic stress were discussed, particularly within the anammoxosome. The microbial community evolution and the development and transfer of antibiotic resistance genes (ARGs) were further analyzed to reveal the resistance mechanisms of anammox. To address the limitations imposed by antibiotics, the development of bio-augmentation and combined processes based on molecular biology techniques, such as bio-electrochemical systems (BES), has been suggested. This review offered new insights into the mechanisms of antibiotic inhibition during the anammox process and aimed to advance their engineering applications.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.