Takumi Narita, Wen-Chuan Hsieh, Yu Tzu Ku, Yu-Chieh Su, Hiroki Inoguchi, Hiroyuki Takeno
{"title":"Fracture Behavior and Biocompatibility of Cellulose Nanofiber-Reinforced Poly(vinyl alcohol) Composite Hydrogels Cross-Linked with Borax.","authors":"Takumi Narita, Wen-Chuan Hsieh, Yu Tzu Ku, Yu-Chieh Su, Hiroki Inoguchi, Hiroyuki Takeno","doi":"10.1021/acs.biomac.4c01199","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the fracture behavior of cellulose nanofiber (CNF)-reinforced poly(vinyl alcohol) (PVA) hydrogels cross-linked with borax and the effect of freeze-thaw (FT) cycles on it. The CNF/PVA/Borax hydrogel not subjected to FT achieved a fracture energy of 5.8 kJ m<sup>-2</sup> and a dissipative length of 2.3 mm, comparable to those of tough hydrogels. Lacking either CNF or borax remarkably decreased the fracture energy and the dissipative length; CNF contributed to a physical blocking of the crack growth, whereas the complexations between CNF and borate yielded nonlocalization of energy dissipation. Repeated FT cycles markedly improved the mechanical performance of unnotched samples, but they decreased the fracture energy due to the lowering of the dissipative length. Besides, CNF/PVA/Borax hydrogels were suitable for cell scaffold materials. The culture of umbilical cord mesenchymal stem cells (UC-MSCs) revealed a positive correlation between culture duration and the number of UC- MSCs adherent to the material.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"374-386"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01199","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the fracture behavior of cellulose nanofiber (CNF)-reinforced poly(vinyl alcohol) (PVA) hydrogels cross-linked with borax and the effect of freeze-thaw (FT) cycles on it. The CNF/PVA/Borax hydrogel not subjected to FT achieved a fracture energy of 5.8 kJ m-2 and a dissipative length of 2.3 mm, comparable to those of tough hydrogels. Lacking either CNF or borax remarkably decreased the fracture energy and the dissipative length; CNF contributed to a physical blocking of the crack growth, whereas the complexations between CNF and borate yielded nonlocalization of energy dissipation. Repeated FT cycles markedly improved the mechanical performance of unnotched samples, but they decreased the fracture energy due to the lowering of the dissipative length. Besides, CNF/PVA/Borax hydrogels were suitable for cell scaffold materials. The culture of umbilical cord mesenchymal stem cells (UC-MSCs) revealed a positive correlation between culture duration and the number of UC- MSCs adherent to the material.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.